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ABSTRACT

Empirical Orthogonal Function (EOF) analysis is used to

describe the synoptic forcing features of selected northwestern

Pacific Ocean tropical cyclones from 1967 to 1976. EOF analy-

sis is applied to the geopotential field at 850, 700 and 500mb

on a 120 point grid with 5 degree latitude and longitude

spacing that is centered on the storm. The 120 EOF coeffi-

cients (for each level) are computed for a sample of 454

cases in the history file. The coefficient vectors are trun-

cated to the first 10 coefficients, based on the Monte Carlo

selection criteria of Preisendorfer and Barnett. These coeffi-

cients describe about 85% of the variance in the fields. The

synoptic forcing represented by the EOF coefficients is then

used as a predictor in a regression analysis track forecast

scheme, along with past storm movement and intensity during

the past 36 hours. The EOF-based regression equations are

verified over an independent sample of 50 storms, and the

position errors compared to the official Joint Typhoon Warning

Center (JTWC) forecast errors. The EOF-based regression equa-

tions give, on the average, a 17% reduction in error when

compared to the official forecast issued by JTWC. Over the

independent sample, the 500mb equations performed better than

the equations of the other two levels.
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I. INTRODUCTION

Tropical storms spawned over the western North Pacific

Ocean genesis region have great impact on both civilian and

military populations; accurate movement forecasts are critical

to reduce their impact upon these communities. The Joint

Typhoon Warning Center (JTWC), Guam, Marianas Islands, issues

the official forecast (to United States military agencies)

of tropical storm movement and intensity for storms generated

in this region. Using current forecast techniques, these

official forecasts have an average forecast position error on

the order of 120, 240 and 360 nautical miles for 24-, 48-, and

72-hour forecasts (Annual Typhoon Report, JTWC, 1981). There

is potential for improvement.

Present forecast techniques for tropical storm movement

may be generally categorized as being either statistical (which

includes analog techniques) or dynamical. The motivation

driving the two types of forecasts differs greatly. Statisti-

cal forecasts typically use regression or analog methods with

all available historical storms having archived data to pro-

duce a statistically optimal position forecast. Regression

analysis methods assume that certain variables deterministically

correlate with future storm displacement. These correlated

variables are then used in a regression analysis to produce a

forecast. Leftwich and Neumann (1977), for example, use a

second order polynomial regression with seven primary predictors
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to forecast typhoon movement. The seven predictors include

Julian date, initial latitude and longitude, and past 12-

and 24-hour zonal and meridional movement. Since they used

polynomial regression, these seven primary predictors actually

give rise to 35 predictors when :he second order predictors

are formed. Using these predictors, Leftwich and Neumann

were able to account for 65% of the variation in the zonal

displacement and 53% of the variation in the meridional dis-

placement for 12 hours. Over a 72-hour period, the amount of

explained variance became progressively smaller. Analog tech-

niques (e.g., Jarrell and Sommervell, 1970), use the histori-

cal file of storms to identify storms, and the surrounding

environmental fields, that have strong similarities to the

present storm. Then, a weighted similarity index of certain

variables is used to select those storms in the history file

that are most similar to the present storm. A weighted aver-

age of the selected storm tracks is the basis of the forecast

movement of the present storm. The justification for using

this technique is that a storm with similar location and

surrounding fields should also have a similar track. Jarrell

and Sommervell (1970) present an analog scheme which is the

original version of the scheme used presently at JTWC.

In contrast to the statistical methods, dynamic forecast

techniques assume that the motion of the storm may be fore-

cast directly from numerical integration of geophysical

governing equations (momentum, continuity and thermodynamic

17



equations, for example). Harrison (1973) presents a simple

nested grid model to forecast typhoon movement using the primi-

tive equations. This is the original version of the opera-

tional nested tropical cyclone model available at JTWC

(Harrison, 1981).

Both statistical and dynamical forecast methods have weak-

nesses. The statistical methods have two primary problems;

first, since they are based on historical data cases, any

storm that has an unusual motion is not likely to be forecast

well. Additionally, the use of statistical methods tends to

homogenize (smooth) the forecast. Forecasts using a blend of

similar past history storms are typically insensitive to

subtle differences in the synoptic (dynamic) forcing fields.

Thus, purely statistical methods have deficiencies in fore-

casting the unusual case and inability to distinguish subtle

differences in the synoptic-scale fields.

Dynamic forecasts, on the other hands, have limitations

in both theory and cost. Due to the smallness of the coriolis

parameter in tropical regions, a geostrophic relationship is

not feasible. This makes initialization of fields difficult

and increases the probability that any erroneous data points

will deteriorate the numerical forecast rapidly. Convective

heating is a driving mechanism for development of tropical

storms, rather than baroclinic instability as in the mid-

latitudes. Unfortunately, convective heating is v:jry difficult

to model (Haltiner and Williams, 1980). Therefore, the govern-

ing equations are suspect in the tropics, due to poor

18
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initialization and modeling of convective heating. An even

greater problem is that interaction between different scales

of motion is critical to maintain an energy balance in the

tropical cyclone. If the grid spacing is not small elough,

the energy balance will be altered, and possibly give spurious

solutions. For this reason, the grid must have very fine

resolution to simulate numerically this interaction. The cost

of numerical integration on a fine grid can be very large due

to the Courant-Fredricbas-Levy (CFL) condition which requires

smaller integration time steps as the grid spacing decreases

(Haltiner and Williams, 1980). An additional problem with a

fine grid model is that there are generally inadequate wind

and mass observations to initialize the numerical model in the

tropics, and this problem is increased as the grid size is

reduced.

With the difficulties in both types of forecasting methods,

an alternative method is proposed here. This study will em-

ploy Empirical Orthogonal Functions (EOF's) to represnet

numerically the large scale synoptic (dynamic) fields. Then,

these functions will be used to forecast the tropical storm

movement using regression equations. This approach is novel

for forecasting of tropical storm movement, in the sense that

previous regression analysis methods (Leftwich and Neumann,

1977, for example) have not incorporated the entire synoptic

forcing field. If an attempt to develop a simple linear re-

gression model using a large synoptic field is made, the number

19



of predictors becomes prohibitive, as each grid point value

relative to the storm would be a predictor. Early analog studies

used only a single feature from the synoptic chart, such as

the 700mb trough longitude to the north of the storm, to repre-

sent the synoptic field. This study will use the Empirical

Orthogonal Function representation of the entire synoptic forcing

field around the tropical storm. Therefore, in a broad sense,

this approach may be thought of as a dynamically-based statis-

tical forecast scheme. This type of approach is not totally

without precedence. Lorenz (1977) states:

In an informal conversation in which this writer
(Lorenz) took part in about 20 years ago, the
question arose as to how the best system for pro-
ducing the operational objective 24 h prog could
be developed, if the system had to be ready within
one year. We more or less agreed that the further
improvements in numerical weather prediction to be
expected in a single year would be small, and that
the greatest gains would come from an empirical
scheme in which the numerically produced prognostic
charts, or "numerical progs" would enter as
predictors....

Substitution of "improved tropical forecast scheme" for "24 h

prog" in the quotation gives the basis and purpose of this

study.

Empirical Orthogonal Function analysis allows a field with

many grid points to be represented by a linear combination of

a few constant vectors and variable coefficients, while re-

taining a large portion of the total variation (from the mean

state) in the field. Thus, a synoptic field with many grid

points may be accurately represented by only a few variable

20



coefficients (given the vectors are constant), which makes the

technique ideal to use with regression analysis. For example,

Kutzbach (1967) was able to represent 88% of the total varia-

tion in average January temperatures at 23 stations (grid points)

in North America over a 25-year period by using only five

coefficients and constant vectors. That is, the entire sy..op-

tic scale chart of mean temperature was represented by a 23

element vector, and all of the data were stored in 25 indi-

vidual 23-element vectors. Thus, Kutzback was able to reduce

the number of vectors needed to describe the January tempera-

ture field for each year (at the 23 locations) from 25 to 5.

The Empirical Orthogonal Function analysis in this study

is used for data reduction and representing synoptic fields

numerically. The synoptic-scale forcing upon the tropical

storm may be represented by only a few coefficients obtained

from the analysis. These coefficients may be then used to

forecast statistically the tropical storm movement. In this

manner, the synoptic (dynamic) forcing is incorporated into

the statistical forecasting scheme. Thus, the primary pur-

pose of this study is to investigate the role of the synoptic

forcing and to forecast tropical storm movement from this

forcing.
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II. DATA ACQUISITION AND FIELD DEFINITION

The tropical cyclone t.acks and height data used in this

study are identical to those used by Brown (1981). The data

required for an individual case include D-value fields at 850,

700 and 500mb and the storm location history prior to and

after the forecast time. A relocatable 120-point grid is

defined with 5-degree grid spacing in both iongitude and lati-

tude. The grid covers an areal extent of 70 degrees east to

west and 35 degrees north to south. Individual grid points

are numbered as shown in Fig. 2-1. The grid is moved each

map time such that the tropical storm is always located at

grid point 70. A moveable grid can create difficulty in ob-

taining composite variable fields due to the longitude con-

vergence as the storm moves further north. For this study,

this problem is assumed to be of minor importance, and any

composite type fields are computed assuming a flat earth. It

will be shown below that this as!iimption is not too bad over

the domain used in this study.

D-values are defined (Husc. ., 1959) as height deviations

(in meters) from the standard atmosphere height at a constant

pressure surface, and are typically positiie in the tropics.

The source of the data is the operational Fleet Numerical

Oceanography Center's (FNOC) Northern Hemisphere (63 X 63)

analyses at 850, 700 and 500mb. The following selection condi-

tions are required:
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(1) A tropical cyclone of at least tropical storm (35

knots) intensity must be present west of 180OW;

(2) The storm must persist at least 30 hours with tropical

storm intensity or greater, as analyzed by the Joint Typhoon

Warning Center (JTWC), Guam;

(3) The storm must be located between 100 and 25 0 N. This

requirement was included to insure the grid did not extend

into the Southern Hemisphere, and was not comprised of pri-

marily mid-latitude D-values. Since the latitudinal domain

is limited, the problem of longitude convergence is nut a

significant problem at the latitudes of the domain. The dis-

tance from the western edge of the grid to the storm ranges

from 1772 nautical miles at 10 0 N to 1631 nautical miles at

25 0 N, to 1474 nautical miles at 350 N and finally to 1157

nautical miles at 50 0 N. This range of distance is considered

insignficicant.

(4) Since the storm position is coupled with the upper

level analysis, only storms existing at 0000 GMT and 1200

GMT are considered;

(5) A 36-hour separation between subsequent positions of

the same storm is required to provide a pseudo-independence

between cases. This independence is a critical considera-

tion whenever statistical analysis is conducted.

After defining the selection criteria (1) through (5),

the JTWC Annual Typhoon reports from 1967 to 1976 were examined

to select potential cases. These particular years were chosen
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because the FNOC Northern Hemispheric D-value fields were

available from Systems and Applied Sciences, Monterey, Cali-

fornia, during these years. Examination of the JTWC reports

yielded 560 potential cases meeting the criteria above. How-

ever, only 540 cases had th, required D-value data. Of these

54C, there were data problems with an additional 36 cases,

leaving 504 valid cases. Archived D-value data were inter-

polated to the 120-point movable grid by the method of bessel

linear interpolation (Brown, 1981). The phrase "base time"

will be used to define the time of the initial D-value field,

and therefore the forecast. The storm warning position from

JTWC is used as the location at the base time and at ail times

prior to the base time, whereas the JTWC best-track position

is used for verification positions. This is a significant

difference from Brown (1981), who used only the best-track

positions for all historical locations. Warning positions

are used because they are the actual locations available at the

time of forecast. The best-track positions are calculated

after the typhoon season, and are not available to the fore-

caster in the field. Nevertheless, they are assumed to be

the optimal position and t.,erefore the value that the forecast

scheme tries to replicate.

Storm warning positions are obtained at the base time and

12, 24 and 36 hours prior to the base time. Best track posi-

tions are gathered for future positions in 6-hour increments

from the base time to 84 hours in the future. Therefore, a

storm with complete history has continuously availabl.e locations
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for 120 consecutive hours. The set of three levels of D-value

fields, four warning positions and 15 best-track positions

comprise the entire set for each case. The number of cases

having X available prior warning positions and Y future best

track locations available is shown in Table 2-1. It is inter-

esting to note that while there are 504 valid cases meeting

criteria (1) through (5), only 401 cases have all 36-hours of

prior warning position. rurthermore, only 185 cases have koth

36-hours prior warning position and 84 hour future best track

positions available. The number of storms with 36-hour prior

warning position available increases to 298 available cases

with 48-hour future best track location and 401 storms with

30-hour future best track locations at tropical storm strength.

The number of cases with a full 36-hour history is important

when the regression equations are developed.

The composite D-value fields at 500, 700 and 850mb using

all 504 cases are shown in Figs. 2-2, 2-4 and 2-6. Of inter-

est is the relatively small gradient in the tropics in the

500mb composite. This level has relatively little indication

of a tropical disturbance at grid point 70, since the 500mb

level is near the level at which the surface cyclone becomes

an upper-level anticyclone. The lower level (850 and 700mb)

charts show fairly strong gradients in the D-value field around

point 70. Figs. 2-3, 2-5 and 2-7 show the D-value standard

deviations for all three levels. As expected, the greatest

D-value variation is near the storm location and in the mid-

latitude westerlies to the north. These mean and standard
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TABLE 2 - I

The number of valid cases by prior JTWC warning positions
and future JTWC best track position. See text for details.

MUSBER OF CASES
TOTAL WITH BASE T13E AND

12 HOUR 24 HOUR 36 HOUR
PRIOR WARNING POSITIONS ONLYF UT URE

LOCATIONS
AVAILABLE
(In hours)

6 504 461 422 401

12 504 461 422 401

18 504 461 422 401

24 504 461 422 401

30 504 461 422 401

36 '480 439 400 379

42 380 351 315 298

48 380 351 315 298

54 380 351 315 298

60 352 325 291 274

66 265 242 215 200

72 265 242 215 200

78 265 242 215 200

84 265 221 199 185
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Fig. 2-2. The mean (composite) D-value field at 500mb.
Isopleths are deviation in meters from
standard atmosphere. Storm is always located
at grid point 70 (X).

70A

so.(

o5 . -- -- -- -- -- -- -

Fig. 2-3. The composite standard deviation D-value
field (Ln meters) at 500mb. The storm is
always located at grid point 70 (X).
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Fig 2-4. Similar to Fig. 2-2, except for 700mb.

0.1

Fig. 2-5. Similar to Fig. 2-3, exept for 700mb.
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2@0.

Fig 2-6.. Similar to Fig. 2-2, except for -85Omb.

SCA

Fig. 2-7. Similar to Fig. 2-3, except for 850mb.
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deviation fields are the fields used in normalizing the data

for each case, by grid point, for use in the Empirical

Orthogonal Function analysis. The 504 cases comprise the

data set from which the Empirical Orthogonal Functions will

be obtained.

31



III. EMPIRICAL ORTHOGONAL FUNCTIONS

A. BACKGROUND

The terminology "Empirical Orthogonal Function" (EOF) was

introduced by Lorenz (1956). Actually, EOF analysis is a

variation of the statistical technique of principal com-

ponents, and was introduced in its current form by Hotelling

(1933), and was based on an idea of Pearson (1901). Before

delving into the mechanics of EOF analysis, the basic concepts

and meaning of principal components will be presented geo-

metrically. Geometric meanings presented for principal

components are valid for EOF's, since EOF's differ from

principal components only by a scaling factor.

Principal components aid in explaining interrelations of

individual variables acting on a larger field. Morrison (1967)

presents a concise geometric interpretation of the method.

Principal components may be drawn from data sets in any num-

ber of dimensions, but their meaning is most easily seen in

three-dimensional space. Suppose three variables (XIX 2 ,X3 )

form a trivariate observation space. For example, Xl, X2 , and

X3 could be the 500mb D-value at gridpoints 1, 2 and 3 respec-

tively. A large collection of simultaneously measured values

of the three variables could be plotted as in Fig. 3-1. The

shaded ellipsoid in the figure represents the scatter plot of

many observations of the three variables. The origin of the

axis is the mean value for each of the three variables. The

"32



Y3

Fig. 3-1. An example of trivariate principalcomponents. See text for details
(Morrison, 1967).
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first of the three principal components (there will generally

be three unique principal components in three dimensions) is

the major axis of the ellipsoid, denoted as Y1 in the figure.

In other words, the first principal component is the axis in

space that explains the maximum variation from the origin in

the three-dimensional space. For this reason, the term

principal axes is sometimes used instead of principal com-

ponents. It is easily seen that this first principal component

can be represented by a vector (and the vector 180 degrees out

of phase) originating at the origin. The second principal

component is the minor axis (Y2 ) which describes the maximum

amount of variation in the ellipsoid that is not explained by

the first component. The second principal component is also

subject to the constraint that it be orthogonal to the first

component. This is identical to saying the second principal

component is the largest minor axis which is orthogonal to

the major axis. The third principal component is the third

minor axis (Y3 ) which explains the remainder of the variation

of the ellipsoid. This component is subject to the constraint

that it be orthogonal to the first two components (axes). Thus

the three principal components explain the total variation in

the observation ellipsoid. The components are simply orthogonal

axes, in three dimensions. It is seen from this simplified

example that the technique may be easily extended to applica-

tion in multiple dimensions. If the axes are defined by

vectors, it is straightforward to find orthogonal vectors by
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standard methods. This orthogonality constraint simplifies

identification and interpretation.

In M-dimension space, there will be M (or occasionally

fewer) orthogonal components, which are simply the orthogonal

vectors in M space. If there are fewer than M unique com-

ponents, the observation variables are overdefined, and two

or more of the 4escribinq variables are perfectly correlated.

If this is the case, one of these perfectly correlated varia-

bles may be omitted with no loss of information.

As mentioned, Lorenz (1956) introduced the terminology

"Empirical Orthogonal Function", and made the application to

the atmospheric sciences. The mathematical method used for

finding the orthogonal components or vectors involves solution

of the eigenvalue problem in M space. EOF's are simply princi-

pal components that have not been scaled by the square root

of the corresponding eigenvalue found in the solution. This

subtle difference is really of little concern. It does cause

a slight modification in the computations, and also slightly

changes the interpretation of the results. This interpretation

difference arises because the loadings (elements) of the solu-

tion eigenvector (principal component) are nothing more than

the correlation of the variables in a given dimension with the

principal axis it defines (Anderson, 1958). No such easy

interpretation of the loadings is possible with EOF's. This

modification is not significant, and the salient points and

geometric interpretation valid for principal components are

likewise valid in EOF analysis; only the lengths of the
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orthogonal vectors are different. The mathematical details

will be covered in the next section.

EOF analysis normally has been used in two primary appli-

cations in geophysical sciences.. These are either as a map-

typing tool, or as a tool for reducing dimensionality and

explaining the variance structure of a large field. For

example, Stidd (1967) uses EOF analysis to describe the varia-

tion in average monthly rainfall in Nevada. In this paper,

Stidd states:

eigenvectors might be regarded as an ultimate develop-
ment in the use of orthogonal functions to describe
patterns or arrays of data.

He goes on to show that annual precipitaion in Nevada may be

described primarily by one of three basic "components". The

three are: (1) a winter maximum from large scale storms,

(2) a secondary peak during the summer due to thunderstorms;

and (3) a small effect due to the removal and inclusion of

water into the hydrological structure due to snow pack. EOF

analysis allows extraction of each component and allows the

researcher to determine the primary variables driving each of

the components. Additionally, by using a linear combination

of the eigenvectors (components), it is possible to determine

and estimate the rainfall amount in 4ata sparse and non-observed

regions. This estimation is done by interpolation of coeffi-

cients associated with each eigenvector. These coefficients

will be ixplained more fully in the next section. Stidd was

able to explain 93% of the total variance in the annual rain-

fall in Nevada by using only three eigenvectors and coefficients.
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This is compared to the initial estimation which required 12

charts (one for each month). The key points are that Stidd

was able to bo+-h isolate the causes behind annual variation

in Nevada rainfall (over all locations in Nevada), and addi-

tionally, reduce the data required to make this estimate by

75% (from 12 charts to three). This "gleaning of the forcing

pattern" and data reduction use of EOF's has been used fre-

quently in meteorological applications. Other examples of

EOF use in this manner are found in Rinne and Karhila (1979),

and Craddock and Flood (1969).

Another application of EOF analysis has been for map typ-

ing. Brown (1981) uses EOF analysis to divide a large sample

of cases into smaller discrete subsets by map typing based on

the coefficients derived from EOF analysis. The primary objec-

tive was to use the subsets of similar cases to form analogue-

type forecasts of tropical cyclone tracks. Accuracy of fore-

casts using this map typing scheme is generally less than with

other objective tropical cyclone motion forecasting techniques.

B. MECHANICS Or THE EOF METHOD

The mechanics of EOF analysis presented here follows an

elegant treatment by Kutzbach (1967). The notation used in

th!is development is defined as follows; a single underscored

variable in lower case letters is a vector (e.g., !), an

uppercase variable with two underscores is a matrix (A), and

a primed vector of matrix is the transpose (e'). The raw

data field (in this study, the 120 grid point fields of
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D-values) is formed into a matrix, A. This matrix is con-

structed so that each column consists of the 120 observed

D-values for a particular data case. Each row represents the

D-values at the same grid point for all data cases. If there

are N separate data cases (storms), with each case having M

grid point values, A is an M X N matrix representing the

observed D-value fields. The objective of EOF analysis is to

determine the single vector (e) in M dimensions that best

represents all of the N observation vectors. This is equiva-

lent to saying that one wants to find the vector (e) that

minimizes the summed squared error of all observation vectors

compared to (e). Therefore, EOF analysis may be thought of

broadly as a multi-dimensional extension of a least squares

technique.

The matrix A may be constructed in one of three ways:

with the actual data values; with the departure from mean

data values; or with the normalized departure from mean values.

There are advantages and disadvantages to using each type of

initialization for the data matrix A. In the first case, the

resultant EOF's will have magnitudes on the order of the actual

data, and will effectively represent the actual component

field. Morrison (1967) points out that this type of input-

matrix may be dangerous to use if the variables in the differ-

ent dimensions vary widely in magnitude. As seen in the mean

and standard deviation charts of the fields (Figs. 2-2 through

2-7), this could be a pr blem here, since the D-values are

generally quite a bit lower in the northern portion of the grid,
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as well as having larger variation in the north. There are

systematic differences in magnitude at different points on

the grid (dimensions). Thus, the grid points with larger

values are given more weic ht than the grid points with smaller

values, and some of the meaning of the resultant eigenvectors

is lost. For this reason, this type of input data was not

used. A second potential form for the data matrix A is to

have the elements be comprised of the deviations from the mean

value of a given dimension (row,. This type of approach is

more in line with the classical principal components approach.

In this case, the eigenvectors are extracted from the covari-

anca matrix. This is really the main advantage to this form,

while the primary disadvantages are that the interpretation

of the resultant eigenvectors becomes muddled due to scaling

of the dimensions and again, there is not equal weight between

dimensions if their magnitades differ. The third choice for

the input data matrix form is to use normalized departures

from the mean. This has a disadvantage in that it may smooth

slightly the resultant eigenvectors iKutzbach, 1967). This

approach was selected because the variations in all dimensions

are equally weighted in extracting the eigenvectors. In this

study, normalization is accomplished by subtracting the mean

value at that grid point (over all cases), and then dividing

by the standard deviation of that grid point over all cases;

(amn) T= (amn " 1ýd/Sam
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where:

(a mn)T is the transformed data point

amn is the original data point (D-value)

a m is the mean of a at grid point m-(taken
over all n cases)

Sam is the standard deviation of a at grid
point m (over all n cases).

Brown (1981) discusses in more detail various methods of

normalization transformations.

After obtaining the normalized input data matrix A (over

all N cases), the next step is to maximize the quantity

W(A') 2N-/e'e, (1)

(where, unless otherwise noted, any product of two vectors

or matrices is the dot (inner) product) under the constraint

that

e'e = 1. (2)

Equation (1) is the squared product of an arbitrary vector

(e) and the actual data vectors. Constraint (2) is made simply

to normlaize the maximized product. This maximization of (1)

with constraint (2) may be rewritten:

max{y: e'e i} where y= (e'A) 2 N"1  (3)
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or

Max{y: e'e = l} where y = e'AA' eN"I, (4)

Defining R = AA' N", equation (4) may be written as

Max{y: e'e = 1' where y - e' Re . (5)

It is of interest to note that the form of R is the cross

product matrix if A is comprised of the actual data. However,

R is the covariance matrix, or the correlation matrix, if the
input matrix A has elements which are deviations from the

mean or normalized deviations from the mean, respectively.

Premultiplying both sides of equation (5) by e results in

ey = Re. (6)

Morrison (1967) shows that maximization of y leads to the

requirement that II - yIj = 0, or else the solution is trivial.

Maximization of (6), therefore, yields the eigenvalue problem,

where y is the eigenvalue.

Equation (6) applies to maximization of one eigenvector

only. Since there are M dimensions in the original problem,

one wishes to maximize the explained variance in each of the

dimensions. Therefore, it is convenient to rewrite (6) for

all vectors in the M-space as
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E Y = RE. (7)

Here, E is an M X M matrix, rather than a vector as was the

case fcr (6). It turns out t1'at the elements of Y are thb

eigenv•lues found solving IR - YIj 0. Each column of E

is an eigenvector associated with a single eigenvalue Yi"

It follows from the definition of eigenvectors that they are

orthogonal (uncorrelated). Again, the necessary condition in

finding E is that E'E = I, the identity matrix.

Returning to the basic definition of R, it is seen by

substitution that

E'AA' E - N Y . (8)

Morrison (1967) has shown that the eigenvector associated

with the largest eigenvalue (yl) is the vector that explains

the maximum variation in R. In fact, the first eigenvector

explains

m
Yl/ Yi (9)

of the total variation in R. The variance unexplained by the

first (largest) eigenvector is the residual. The second

eigenvector is associated with the second largest eigenvalue,

and explains the maximum variation remaining in the residual

field, and is given by
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m
Y2/ yi (10)

Therefore, the first two eigenvectors together eplain

m
YJ Y2i=l

of the total variation in R. The process continues with each

successive eigenvector describing the maximum remaining varia-

tion in the residual field. The final eigenvectoc is simply

any variation in the total mean field left unexplained by the

combination of all previous eigenvectors. As the last eigen-

vector explains all of the remaining variation in the field,

the total variation in R is explained by all of the eigenvectors.

Any of the original fields (cases) may be obtained by

calculating the EOF coefficients. These coefficients (called

multipliers by Stidd, 1967, and others) are also orthogonal

and are found by defining:

C - E'A (12)

'where C is an M X N matrix. The nth row of the coefficient

matrix (C) is the orthogonal coefficient vector corresponding

to the nth case. The input data matrix A may be retrieved by

A - E C, (13)
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which exactly replicates each data case in A. One of the

primary advantages of EOF analysis arises from the fact that

the first few eigenvectors often describe a large portion of

the total variance in a sample, depending on the structure

and correlation in the field. One may quite accurately

approximate the actual field by retaining only the largest

few eigenvectors. Assuming 500 cases, the initial data matrix

required to describe the synoptic fields is a 120 X 500 matrix,

which has 60,000 elements. Using only the first 10 eigenvec-

tors and orthogonal coefficients, the original fields may be

represented accurately by multiplication of two matrices,

the first a 120 X 10 matrix of truncated eigenvectors, and

the second a 10 X 500 coefficient matrix. The total number of

elements in both matrices is only 6,200. Since EOF analysis

allows a high percentage of the total variation to be explained

by only the largest few eigenvectors, it is seen that the data

may be accurately estimated using as little as 10% of the total

number of data points.

This significant reduction of dimensionality makes EOF's

a prime tool to use for climatic estimation, and has been

used as such by Horel (1981), Kidson (1975), Walsh and Mostek

(1980) and Walsh and Richman (1981) among others.

All N observed fields are represented by the linear

combination

a. cin 1i n 1 #2,...,N, (14)
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where a is the nth cases. Thus each case may be represented

as a linear combination of the orthogonal coefficients and

elements of the eigenvectors. The first k eigenvectors

(k << m) generally represent a large portion of the total

variance in a. Keeping only the largest k eigenvectors, the

actual cases may be very closely approximated by:

k
a c=c. in n = 1,2,...,N. (15)

If one retains only significant eigenvectors, maximum infor-

mation may be retained with little complicating noise. This

leads to the obvious problem regarding the optimal number of

eigenvectors to keep.

C. SELECTING THE NUMBER OF EIGENVECTORS

In the previous section, it was demonstrated how a data

field may be represented accurately by a linear combination

of only a small number of eigenvectors and coefficients. The

question of how many eigenvectors to retain is vital. Simply

stated, the question is at what point does the linear combina-

tion no longer add signal, but only describe noise in the data.

Unfortunately, there is no single accepted answer to this

question. Several possibilities are presented here.

The classical principal component approach is outlined by

Morrison (1967), and assumes a very large, normally-distributed

sample for the data. In this case, the significant eigenvectors

may be identified by asymptotic behavior of the eigenvalues.
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One seeks those eigenvectors that are significantly different

than zero. Anderson (1963) has shown that sampling problems

using normalized data are much more complex than when non-

normalized departures from means are used. Therefore, the

initial development given here assumes non-normalized data,

because the mathematical description is easier to follow. When

the number of observations is very large, Anderson (1963)

shows the quantity /r(i.-X) is distributed normally about a

zero mean, with variance of 2X1. Here X.i is the sample popu A-

tion eigenvalue, Xi is the total population eigenvalue, and

n the number of cases. Further, Anderson shows the eigenvalues

are independent of each other. In this case, one may use a

confidence interval approach to determine if the eigenvalues

are significantly different than zero. If an eigenvalue is

not significantly different than zero, the associated eigen-

vector describes only random noise. The confidence interval,

given by Morrison (1967) is:

< . < (is)
S1 + z 1/2a /2-7n - - 1 - z l/ 2 VrTn

where:

Z1 / 2  is the standard two tail z score (z - 1.96
gives a 95% confidence interval)

The asymptotic decision rule is simply that the eigenvector is

discarded unless the lower limit in (15) is greater than zero.
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While this method is sound theoretically, and works very

well for large data sets, Preisendorfer and Barnett (1977)

point out that data sets used in meteorological (and oceano-

graphic) studies are rarely of the size for which asymptotic

behavior begins to emerge. In fact, Preisendorfer and Barnett

suggest that a s*.nple size on the order of 1000 cases may be

required before asymptoticity applies. Since the data set

used in this study is much below this size, the classical

asymptotic selection approach for determining how many eigen-

vectors to retain was not used.

Another approach used throughout the literature (e.g.,

Rinne and Karhila, 1979) involves examination of the natural

logarithm of the eigenvalue. This method is called the LEV

(Logarithmic EigenValue) diagram method. The basis of this

method is that the eigenvectors for those components that

describe signal have a different structure than those that

describe noise. Furthermore, it has been noticed that the

structure change is most easily noted when natural logarithms

of the eigenvalues are examined. To use the method, the eigen-

values are first ordered, from largest to smallest. This

method will work if there is a distinct change in slope of the

ordered eigenvalues at some point. All eigenvalues larger

than this slope change point are retained, and all smaller ones

omitted. While this method apparently does well in some cases,

and is exceedingly simple to use, it is not used in this study

for several reasons. First, it is not at all clear that a
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break in the slope of the eigenvalues at some point is the

demarcation point between those eigenvalues that describe

signal and those that describe noise. Secondly, even assuming

the break in the eigenvalue slope does indeed mark the point

in signal-to-noise domination shift, the method is scientif-

ically unsatisfying because there is little statistical jus-

tification for its use.

Another method that appears in the literature is to select

the number of eigenvalues and vectors a priori, or select a

percent total variance explained value as the cutoff point a

priori. Richman (1980) presents several of these methods in

detail. For example, Cattell (1958) recommends retaining

all eigenvalues necessary to explain 99% of the total variance.

Guttman (1954) recommends retention of all eigenvectors asso-

ciated with eigenvalues larger than 1. Both of these methods

in effect involve probable overfactoring. That is, use of

these methods leads to keeping more eigenvectors than are

actually required to adequately explain the data. This in

and of itself is not serious unless the eigenvalues and vectors

are rotated to better fit the clusters in space (see Richman,

1981), but it does tend to defeat the purpose of EOF analysis.

If overfactoring occurs, one does not receive maximum data

reduction. Since the purpose of this study was to reduce

the synoptic scaý.i forcing fields to only a few easily separable

components to aid in determining typhoon movement, underfactor-

ing is .•ot a real problem.
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Richman (1980) used a novel approach to determine how many

eigenvectors to retain. He also used rotation of components,

which is discussed in detail in the last section of this chap-

ter. Uis criteria was defined as "meaningfulness". That is,

if the component had apparent meaning (if the component field

was interpretable synoptically), the component was retained.

It has been demonstrated (for example, Craddock and Flood,

1969) that higher order eigenvectors and components degenerate

to little more than a series of uncorrelated high and low value

regions. This means that there is some scientific justifica-

tion to Richman's method. Nevertheless, it was not used here

because it is entirely subjective, and therefore could give

inconsistent results when used by different researchers.

Brown (1981) used the method of retaining the number of

components that explain a "reasonable amount" of the total

variance. Specifically, using the same grid and data fields

that are used in this study, he carried out experiments in

map typing using the largest 10, 15 and 20 of the 120 eigen-

vectors. This selection approach is rather arbitrary, since

there is no objective way of distinguishing what the eigen-

vectors are representing with respect to the signal-noise

problem, and specifically, if any signal is being omitted.

The final method, which is used in this study, is based on

a selection method introduced by Preisendorfer and Barnett

(1977). In essence, the scheme is a Monte Carlo approach to

determining the number of eigenvectors to keep. It is not
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very different from the classic asymptotic appraoch described

by Morrison (1967). The main difference is that it is assumed

by Preisendorfer and Barnett that not enough cases are avail-

able to use an asymptotic approach with geophysical data bases.

One key assumption is that the true (physical) variables are

normally distributed at all individual grid points. The simu-

lation input data are normally distributed, with mean zero,

variance one, which is just simulation of point normalized

data. Given these constraints, and using a large number (N > 100

is recommended by Preisendorfer and Barnett (1977)) of simula-

tions, one can create sufficient numbers of random fields to

simulate accurately the eigenvalues that result if the process

is purely random. In addition to calculating the mean value

of the simulated eigenvalue, the standard deviation of that

eigenvalue is calculated over the 100 or more simulations. If

the true physical eigenvalues deviate from the simulated random

field eigenvalues by more than two (three) standard deviations,

one is 95% (99%) confident that the field is significantly

different from a field that is purely random. In other words,

if deviation is by more than two standard deviations, one is

reasonably assured that the eigenvector is desciibing signal

rather than noise. The simulated eigenvalues obtained in this

study will be presented in the next chapter, along with the

eigenvalues obtained from analysis of the data. In using this

Monte Carlo method, 504 simulated 120 point random grids were

obtained. The eigenvalues of these random fields were found

and stored. This process was repeated 100 times to obtain the
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simulated eigenvalues and standard deviations of the eigen-

values. These were then compared to the true data eigenvectors.

One caution must be stated concerning use of this method.

Richman (1980) points out that this method has potential to

slightly underfactor. However, this is not of primary con-

cern here since the potential for underfactoring is only slight.

D. ROTATION OF VECTORS

Rotation methods seek to rotate the eigenvectors (axes)

in space to better fit data clusters. There is some contro-

versy existing (Richman, 1980) as to whether rotation of the

resultant components (eigenvectors) should be employed. Many

of the potential schemes have been surveyed in detail by

Richman (1980), who describes some of the specific strengths

and weaknesses of the schemes.

A very simple exan.mle of rotation follows. Suppose that

two distinct data clusters are positioned (in Cartesian two-

dimensional space) at [(1 and [.2 Following the method out-
21

lined earlier in this chapter, the eigenvalues would then be

[4.5] (for non-normalized input data). The eigenvectors would
.5

be and (21] respectively. It is noted then the first

eigenvector (which explains 90% of the total variance) bisects

the two data clusters in space. The second eigenvector does

not really fit the data clusters. Even the first eigenvector

does not give a true representation of the clusters in space.

Misrepresentation of this type may be eased by use of rotation.

The two broad classes of rotation that are employed are the
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orthogonal and the oblique. Orthogonal rotation pivots the

eigenvectors identically so as to maintain the orthogonal

relationship. It is seen in the simplified case just presented

that an orthogonal rotation would never give a perfect repre-

sentation of the input clusters, as the input clusters only

have a 450 angle between them in the two dimensions, and are

assumed to occur with equal frequency. Oblique rotation, on

the other hand, pivots the vectors so as to most closely fit

the data clusters without necessarily retaining the orthogon-

ality constraint. In the simplified case just presented, the

vectors would be pivoted (withix, a scaling factor) to [1] and
222 The vectors are no longer orthogonal, nor is it possi-

ble to determine quantitatively the amount of total variation

explained by either of the vectors without exhaustive analysis.

Richman (1981) uses pre-determined input fields to simulate

the principal component processes. He then compares non-

rotated components to both orthogonally and obliquely rotated

components. His results show obliquely rotated components

give vastly improved delineation of the input patterns. He

then concludes that obliquely rotated componer. s are a better

tool to use for map typing than either orthogonally rotated

or nor-rotated components. If the purpose is to .dentify and

interpret all types of meteorological patterns that force

another event, obliquely rotated components would appear to

give superior results.

Rotation was not used in this study for several reasons.

Delineation of patterns of meteorological features was not the
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specific purpose of this research. EOF's were used in this

study for two purposes. First, they were used to obtain the

orthogonal coefficients which are used in the formulation of

regression equations to forecast tropical storm movement.

Secondly, they were used to reduce the data. The first pur-

pose of the research makes physical identification and inter-

pretation of the resultant eigenvalues less critical. It is

the orthogonal coefficients derived from the linear combination

of the eigenvectors that are used, not the actual eigenvectors

themselves. Nevertheless, it is desirable to use the resultant

eigenvectors with certainty to identify and interpret the forcing

features. It is primarily due to the data reduction purpose

of this study that use of rotated components becomes less

attractive. Since the amount of explained variance (by each

component) is unknown after rotation, the question of how many

eigenvectors to retain becomes unclear. In fact, perhaps the

only valid criteria for retention becomes Richman's meaningful-

ness criteria. In any case, the problem of determining how

many vectors to retain becomes much more difficult after rota-

tion has been employed.

An even more insidious problem with rotation of the vectors

is the effect of underfactoring on the resultant vectors.

Richman (1981) also experiments with underfactoring. If too

few vectors are retained and rotated, then the resultant

rotated vectors become combinations of vectors associated with

several actual input data clusters. Therefore, if underfactoring
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exists, the same type of bisection that is seen in the worst

possible case with unrotated vectors may occur with the rotated

vectors. Since data reduction in this study is paramount,

rotation of components seems ill-advised at the present time.

As a final note, Richman's results, and the simplified

results shown at the beginning of this section clearly show

non-rotated components may not represent the true synoptic

patterns. Conceptually, if the data clusters (input data) are

not synmnetric, errors in the EOF representation are less likely.

This is perhaps most easily seen with a simplified example.

If, for instance, in two dimensions, there are two data clus-

ters occurring with equal frequency, one of the resultant

eigenvectors will bisect the two clusters. This is the case

in the simplified example above since the two cluster points

were assumed to occur with equal frequency. If the clusters

do not occur equally, this bisection does not occur. Richman's

simulated fields were input in mirror-image pairs, with equal

probability of occurrence. In this case, the resultant eigen-

vector bisected the given input fields. True geophysical

synoptic fields are not orthogonal in nature (Barry and Perry,

1973 and others). On the other hand, it is anticipated that

true geophysical fields do not come in matched opposite pairs

that occur with similar frequency. It is for this reason that

the first several unrotated vectors should indeed represent

actual synoptic variability patterns.
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IV. RESULTANT EMPIRICAL ORTHOGONAL FUNCTIONS

The mathematical and theoretical framework for EOF analy-

sis was developed in Chapter III. In this chapter, the forcing

of each eigenvector on tropical storm movement is examined by

correlation of storm motion with the strength of the particular

vector for a given data case, which is given by the value of

the orthogonal coefficient associated with the vector. Before

any meaningful analysis of physical forcing on typhoon motion

may be attempted, the actual eigenvectors must be examined.

Following the mathematical development of Chapter III, the

120 X 504 data matrix was normalized at each grid point, and

the eigenvectors were obtained for all three data levels (500,

700 and 850mb). The resultant eigenvalues for all three levels

were then compared to the random eigenvalues generated from

Monte Carlo simulation using 100 simulations, as suggested by

Preisendorfer and Barnett (1977). These Monte Carlo eigen-

values were all computed from 120 X 504 matrices whose elements

were random normal variables with a mean value of zero and a

standard deviation of one. Thus the statistical structure of

the random fields is identical to the real data normalized

fields. The value of the eigenvalues for the three levels is

given in Table 4-1, which also gives the cumulative percent

explained total variance for each successive eigenvector. Table

4-2 is a list of the randomly generated eigenvalues and their

standard deviations for comparable modes. If the real data
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TABLE 4-1

Eigenvalues and cumulative percent elplained variance
(in parenthesis) for the normalized D-value at each level.

EIGENVALUE 5005B 7009B 850B3

1 39.163 33.3 2 S69 24.7 40.113 J35.
2 21. 97 51.3 25 850 £46.4 20.38 70.:5

3 9.287 59.1 11.39 55.7 11.093 59 .88

4 7.1430 65.3 7.859 62.2 8.38066.8

5 130 80. t 7. 107 .8.2 1871 .
73.0990 178.11 .7 . 3.428 7-

S3.130o 80.7 3.622 78.6 2.931 80.1
9 2.490 82.8 2.596 80.8 2.591 82.8

10 2.111 84.6 2.291 82.7 2.153 84.6

11 1.852 86.1 1.956 84.3 1.743 86.1

12 1.701 87.5 1.607 85.7 1.519 87.3

13 1.1409 88.7 1.1416 86.9 1.279 88.4
14 1. 202 89.7 1.256 87.9 1.059 89.3

15 1.030 90.6 1.128 88.9 .949 90.1

16 91.4 1.064 89.7 .888 90.8

17 .787 92.0 .971 90.6 .841 91.5

18 .776 92.7 .774 91.7 .657 92.1

19 .690 93.3 .623 92.2 .562 92.5

20 .581 93.7 .616 92.7 .552 93.0

40 Ili 98.2) .152 (97.31 .134 96)

.. S.

.039(99.) .060o(98.8) .055 (98.9)

•0 
0

.016" (99.8) .029"(99.5) .027" (99.5)
.. S.

1 .ooo0010oo.o) ... 1"do..0) .002"(100.0)
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TABLE 4-2

.Eiqnvalaes and standard deviations corresponding to the
modes _n Table 4-1 as generated by the Monute Carlo method
(see description in text).

MODE ZIGENVALUE STANDARD DEVIATION EIGENVALUE PLUS
TWICE STANDARD

DEVIATION

1 2169 .041 22581004.1 2.110
~:81~

2.005 .030 2.065
5 1.964 .025 2.018
6 1.928 .026 1.981
7 1.894 .025 1.94488

9.7

10 1.802 .023 1.854
11 1.775 .022 1.819
12 1.749 .020 1.79013 1 1j 1.761

15 1.675 .019 1.713
16 1.652 .021 1.694
17 1.628 .018 1.664
18 1.604 .018 1.639
19 1.581 .017 1.614
20 1.538 .019 1.595

1.•63 .04 1.1

0.6 . o48
o. . . .e So

iUo .113 .0io .13

57



eigenvalue for a specific mode is greater than the random

eigenvalue plus twice the standard deviation, the eigenvalue

and corresponding eigenvector represent geophysical signal,

and the eigenvector is retained. To facilitate this compari-

son, the value of the random eigenvalue plus twice the standard

deviation is also given in Table 4-2. The values of the stan-

dard deviations in Table 4-2 are consistent with Preisendorfer

and Barnett's (1977) results. Comparisons of the three actual

field eigenvalues to those of the random field are conducted

separately, since the number of significant eigenvectors may

be different for each level. The only relationship between

the eigenvectors of the three levels comes from any dynamic

vertical coupling that may exist.

Several interesting features emerge from examination of

the eigenvalues. The number of eigenvectors to retain is dif-

ferent depending on the retention scheme chosen. For example,

Guttman's lower bound test suggests retention of the first 14

or 15 eigenvalues for these levels. Cattell's 99% retention

rule would indicate retention of more than 40 modes at each

level. The Preisendorfer and Barnett selection scheme is much

less conservative, and suggests retention of only 10 eigenvec-

tors at 850 and 500mb and 11 at 700mb. Because the Preisendorfer

and Barnett method keeps fewer modes, the potential for under-

factoring increases. Since only 10 or 11 eigenvectors are to

be retained, roughly 15% of the variance in the fields is

directly accountable to random fluctuations (noise). This

amount of unexplained variance is not unrealistic in the
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tropics. These errors are most likely due to either intiali-

zation or measurement error in the fields. This is not sur-

prising because the initialization problem in the tropics is

difficult (weak governing mass-wind balance relationship).

Even more importantly, there is a very small gradient in the

geopotential field, except in the region near the tropical

storm. This would tend to give a greater weighting to any

observational error in the tropics, compared to the mid-latitudes,

where a linear balance initialization with quasi-geostrophic

constraints can be imposed to reduce errors in the height

fields. Since the areal extent of the grid incorporates a

large portion of the tropical synoptic forcing field (Fig. 2-1)

it is entirely conceivable that there is a 15% level of random

error in the D-value fields.

The 500mb eigenvalues from Table 4-1 are graphically com-

pared to the Monte Carlo simulated eigenvalues (Table 4-2) in

Fig. 4-1. It is seen the actual 500mb eigenvalues decrease

very rapidly with increasing mode, which indicates that a large

number of the components represent data clusters containing

random noise. Graphs of the 700 and 850mb eigenvalues are not

included because they are very similar to the 500mb values.

Preisendorfer and Barnett's assertion that asymptoticity

does not apply for a sample size of 504 data cases may also

be examined. If the asymptotic results are valid, the ratio

Ii (n-) m] /2 174
52
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should be very nearly constant. Here Ci is the mean randomly

generated ith eigenvalue, si is the standard deviation for the

ith mode, n is the number of cases and m is the number of

grid points. The value of this ratio is given in Table 4-3

for selected modes. It is seen that the ratio is not con-

stant, nor does it approach the theoretical value expected

for asymptoticity. Thus it is concluded that asymptotic

theory is not valid for this study.

TABLE 4-3

Test parameter for the asymptotic theory of eigenvalues
is shown for various modes (see text for details).

MODE 1 2 5 10 15 20 40 60 120

RATIO 49.3 56.8 78.6 78.6 88.2 80.9 85.9 84.2 27.3

a

Based on these tests for significant eigenvectors, it was

decided to retain the largest 10 eigenvectors for all levels.

These first 10 eigenvectors at 500mb are shown in Figs. 4-2

through 4-11 and will be examined in detail. The first 10

eigenvectors for both the 700 and 850mb level are shown in

Appendix A, without comment. The discussion of the first 10

eigenvectors at 500mb will include an interpretation of the

probable forcing that the particular pattern has on the tropi-

cal storm, which is always at grid point 70.

The actual values of the eigenvectors in Figs. 4-2 through

4-11 are non-dimensional, since normalized data are used on

input. The broad scale forcing features of an eigenvector do
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have meaning in the standard meteorological sense. Areas of

higher values of the eigenvector may properly be thought of

as high pressure (D-value) regions, areas of low elements as

low pressure regions, and more strongly packed isopleths

indicate stronger flow regions. Finally, it is stressed that

each eigenvector actually represents the pattern shown and the

exact inverse of the pattern shown. Relative gradients of the

patterns and positions of the closed isopleth features remain

unchanged for the positive or inverse eigenvectors. All follow-

ing discussion will be made using the eigenvector pattern

shown; the inverse case will not be discussed. Relevant features

for the inverse pattern may easily be obtained following

the same reasoning as below.

Eigenvector 1 (Fig. 4-2): This pattern shows a band of

stronger easterlies directly to the north of the cyclone.

Additionally, there is a slight northerly component to the flow

directly upstream of the storm. The forcing of the tropical

cyclone for this type of pattern should be to the west and

south.

Eigenvector 2 (Fig. 4-3): This component shows small gradi-

ents throughout the field, as expected in the tropics. As with

pattern 1, a broad band of easterlies is seen to the north of

the storm, but they are much farther north than for pattern 1.

A primary difference between this component and the first vec-

tor is that there appears to be a low centered south-southwest

of the storm, while this low was to the south-southeast for
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vector 1. This component and component 1 both exhibit proper-

ties of planetary scale waves, as they both have very low

wavenumber over the 70 degree longitudinal span of the chart.

This pattern should induce weak forcing to the west and to

the south.

Eigenvector 3 (Fig. 4-4): An entirely different type of

pattern compared to the first two components is seen here. The

vector has a fairly strong area of lower values to the west,

with a small higher valued area south-southeast of the storm.

Another small low is seen well to the northeast corner of the

pattern. Forcing on the storm should be to the north (strongly)

and east (weakly).

Eigenvector 4 (Fig. 4-5): The predominant feature of this

vector is a well developed low to the north and east of the

storm. The storm itself appears to be situated in a strong

flow region between a high and low. The forced motion shc :ld

be strongly to the east, with a weak drift to the south.

Eigenvector 5 (Fig. 4-6): A strong high valued area directly

to the north of the storm is the predominant feature in thiz

eigenvector. The pattern is essentially weavenumber 1 across

the 70 degree span of the chart. The physical analogue of

this vector is difficult to determine. It could well be that

this is a bisection of two distinct data clusters of high pres-

sure on the outer extremities of the grid, since this pattern

bears strong resemblence to the non-rotated bisection case

simulated by Richman (1981). In any case, the eigenvector is
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usable with coefficients that appear in the formulation of

regression equations, and does indeed describe a global wave-

number 5 pattern. This pattern should force tropical storms

to the west and north.

Eigenvector 6 (Fig. 4-7): This pattern is another wave-

number 1 across the 70 degree longitude span of the grid

(global wavenumber 5). The dual low centers are generally

similar to the pattern in eigenvector 3. The forced motion

of the tropical cyclone should be to the west, with little

meridional forcing.

Eigenvector 7 (Fig. 4-8): The expected higher degree of

complexity for higher order modes is beginning to show in

this vector. Five well-defined high or low centers are seen

in the pattern. This vector is approximately globa. wavenumber

7, so that with this eigenvector the slow transition from

large scale to smaller synoptic scales is beginning. The

physical meaning of the pattern is also becoming more difJfi-

cult to define. The forcing of the storm shoule be weakly to

the north and west.

Eigenvector 8 (Fig. 4-9): As with eigenvector 7, there is

a complex pattern of well-defined high and low value centers,

with the storm located in the northern regions of a high

center. Forcinq to the east and south is anticipated from this

pattern, althou.. all forced motions should be weak.

Eigenvector 9 (Fig. 4-10): Eigenvector 9 is somewhat sur-

prising since it has less complexity than the preceeding two
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eigenvectors. Nevertheless, it is approximately global wave-

number 7. A strong blocking high center is found directly to

the west of the storm, while the storm itself is on the west

side of a weaker low. It is possible that the blocking high

pattern represents the effect of the 500mb anticyclone east

of the Tibetan Plateau heat low. Motions forced from this

pattern should be weakly to the south and east.

Eigenvector 10 (Fig. 4-11): The final eigenvector retained

in the truncated set of 10 is the most ccmplex. A series of

well developed highs and lows are seen throughout the extent

of the grid. Short range forcing on the storm would come from

a high located south of the cyclone and two strong low centers

flanking the storm. The pattern is wavenumber 2 over the 70

degrees covered by the grid and corresponds to a global wave-

number 10. This pattern defines even smaller synoptic scale

forcing than the previous patterns. Perhaps coincidentally,

the eigenvector 10 for the 700mb data set (Appendix A) is

virtually identical. This similarity indicates this pattern

is probably a true physical signal, which is vertically coupled

through the mid-troposphere. Motion forced from this pattern

will be to the south with little zonal forcing.

It is essential to show how these ten eigenvectors just

described would combine to represent the original field. Selec-

tion of a case on OOOOGMT 27 August 1967 was made at random

to demonstrate the reconstruction. At this time, Typhoon

Marge was located at approximately 18ON 1256E with maximum

winds of 125 knots. The actual 500mb D-value field is shown in
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Fig. 4-12. The areal extent of the grid is from 430 to 80N,

and 850 to 155 0 E. Therefore, this grid encompasses both

tropical and mid-latitude forcing on the storm. A linear

combination of the first ten eigenvectors and the associated

orthogonal coefficients should be adequate to represent the

relevant physical features according to the discussion in

Chapter III.B.

Among the talient features seen in the total field (Fig.

4-12) is a strong blocking high pressure to the northwest of

the typhoon, positioned at about 25ON, 1000E. A 500mb high

pressure at this location is east of the Tibetan Plateau heat

low which is a stationary feature of the planetary circulation.

There is also a strong high pressure cell (D-values in excess

of +320 meters) to the northeast of the typhoon. This second

high pressure is the westward extension of the subtropical

anticyclone over the western Pacific. Well to the north of

the cyclone is a strong band of mid-latitude westerlies. A

well-developed trough extends from the westerlies into the

tropics and encircles the typhoon.

As the input data have been normalized, the fields need

to be reconstructed using

m
di = I (ci e in)si + d., i lt,2,...,120,

where m is the number of eigenvectors and orthogonal coeffi-

cients used in the reconstruction, i and s are the mean
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Fig. 4-2. Eigenvector 1 elements (multiplied by 100)
at 500mb with the tropical cyclone located
at the x-position.

Fig. 4-3. Similar to Fig. 4-2 except for eigenvector 2.
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Fig. 4-4. Similar to Fig. 4-2 except for
eigenvector 3.

Fig. 4-5. Similar to Fig. 4-2 except for
eigenvector 4.
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Fig. 4-6. Similar to Fig. 4-2 except for
eigenvector 5.
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-. Fig.4-8. Smilar o Fig. 4-2 excep fo

Fig. 4-9. Similar to Fig. 4-2 except for
eigenvector S.
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Fig. 4-10. Similar to Fig. 4-2 except for
eigerivector 9.

Fig. 4-11. Similar to Fig. 4-2 except for
eigenvector 10.
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and standard deviation of the D-value at the ith grid point,

and d. is the reconstructed value.

The reconstructed field using only the first vector and

coefficient (Fig. 4-13) shows westerlies well to the north

with a ridge circling over the top of the storm from the east.

The general features revealed by use of this eigenvector are

the westerlies and high to the northwest. When the second

and third vectors are included in the reconstruction (Fig.

4-14), little information is gained. This is expected since

these two patterns are not evident in the actual field.

The inverse of the fouxth eigenvector has similarities to

the actual case being reconstructed. Both patterns show a

high pressure to the northeast and northwest of the storm

with a trough in the northern section of the grid. It is

anticipated that addition of this eigenvector should greatly

improve resolution of features on the reconstructed field.

Changes in the field are evident on Fig. 4-15, but the overall

resolution of the features is not dramatically improved.

Nevertheless, inclusion of this vector does increase the high

pressure cell to the northeast of the typhoon, and increases

the gradient between the mid-latitude and tropical regions.

The inverse of the fifth eigenvector also has many similari-

ties to the original field. A significant improvement in the

shape of the general features is seen after the fifth vector

is added (Fig. 4-16). A slight trough appears in the mid-

latitude westerlies and a coupling of the tropical and mid-

latitude trough is seen for the first time. Inclusion of the
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next three eigenvectors (vectors 6 through 8) add very little

to the reconstructed field, and are not shown. Similarities

between eigenvector 9 and the original field include a sharp

trough in the westerlies which connects with a tropical trough

in the vicinity of the typhoon. When this eigenvector is added

to the linear combination of the Previous eight, the broad

scale pattern (Fig. 4-17) is delineated much better. There is

general agreement in the positions of the large-scale features

and the gradients between them. Further refinement through use

of higher order modes is necessary to obtain the actual chart.

The difference between the patterns in Fig. 4-12 and 4-18 is,

according to the analysis here, simply random noise. Never-

theless, with only the first nine eigenvectors the salient

features have emerged, and major forcing from the large scale

on the typhoon is defined. The continued progression in the

reconstructed fields using 10, 20 and 40 eigenvectors are shown

in Figs. 4-18 to 4-20. It is noted that the reconstructed

field is almost exact after 40 terms are included, and some

features due to random noise in the field are reproduced. The

correlation of the reconstructed field using various modes to

the original field is shown in Table 4-4. It is seen here that

the correlation of the two fields asymptotically approaches 1

as the number of modes in the reconstruction is increased.

Furthermore, large jumps in the correlation are seen when the

first and ninth eigenvectors are added, and smaller jumps are

seen with inclusion of the third and fourth vectors. This is
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Fig- 4-12. 500mb D-value (meters) field surrounding
Typhoon Marge at OOOOCMT 27 August 1967.

Karge is located at 18fl4 1254E (location X).

240

noso

Fig*. 4-13. Reconstruction of- 500u'b D-value field, 
OOOOGMT

27 August 1967, using the first eigenvector and

orthogonal coefficient. This compares to

true field (Fig. 4-12).
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..,Fig. 4-14. Similar to Fig. 4-13, except first 
three

eigenvectors are used in reconstruction.

4300_____________

Isa

Fig. 4-15. Similar to Fig. 4-13, except first four

eigenvectors are used in reconstruction.
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43"j

as3.C

Fig-. 4-16. Similar to Fig. 4-13, except first five
eigenvectors are used in reconstruction.

2 0

Fig. 4-17. Similar to Fig. 4-13, except first nine
eigenvectors are used in reconstruction.
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320.0

Fig. -'4-19. Similar to Fig. 4-13, except first twent
eigenvectors are used in reconstruction.
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- Fig. 4-20. Similar to Fig. 4-13, except 
firs* forty

eigeflvectors are used in reconstruction.



in agreement with the reconstruction shown above with the

exception that the fourth instead of the fifth eigenvector

seems to have a larger impact on the reconstruction.

Because inclusion of the eigenvectors 1, 3, 4, 5 and 9

seemed to have the greatest impact in the reconstruction, the

orthogonal coefficients associated with these eigenvectors

should have larger magnitudes than the other coefficients for

this case. The values of the first ten coefficients are shown

in Table 4-5. The coefficients associated with eigenvectors

1 and 9 are larger than the other coefficients. Although the

value of coefficient 5 is the third largest value, it is the

same magnitude as the coefficients associated with the second

and third eigenvectors. This is explained in that eigenvec-

tor 2 tends to re-enforce the pattern of the first vector,

while the third eigenvector enforces the joint pattern of one

and two. The coefficient associated with the fourth eigenvec-

tor is small for this case, indicating that this pattern really

had little effect on the reconstruction.

TABLE 4-4

Correlation coefficient of the reconstructed field, using
the number of modes indicated, with the actual field being

reconstructed (see text).
NUMBER OF

MODES USED 1 2 3 4 5 6 7 8 9 10

CORRELATION .618 .583 .663 .737 .752 .757 .728 .734 .885 .867

NUMBER OF
MODES USED 15 20 25 30 40 50 60 120

CORRELATION .852 .894 .936 .974 .994 .993 .994 1.000
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TABLE 4-5

Values for the first 10 orthogonal coefficients for the
case of 27 August 1967. (See text for details).

Coefficient 1 2 3 4 5 6 7 8 9 10

Value 5.94 1.50 -1.70 -. 82 -1.85 -1.03 -. 75 .26 2.56 -. 38

These ten orthogonal coefficients define the pattern, and

will be used shortly as predictors in regression equations for

forecasting tropical cyclone motion. The hypothesis is that

the forcing of typhoon motion may be determined from the vari-

ous eigenvector patterns. As a preliminary test of this hypothe-

sis, the zonal and meridional components of the typhoon motion

(in nautical miles for various times) are correlated with the

orthogonal coefficients associated with the eigenvectors (ob-

tained from base time field). The correlations are calculated

on 12-hour increments for the 12- to 84-hour displacement using

the Pearson product moment (Dixon and Brown, 1979). Because

the motion is defined to be positive to the north and to the

west, a positive correlation means increased north or west

forcing, relative to the mean displacement at a given time, with

an increase in the value (not magnitude) of the coefficients.

This holds for both the positive and negative (inverse) coeffi-

cients in that increases in value for a negative coefficient

(decrease in magnitude) decreases the south or east forcing,

or equivalently increases the north or west forcing. Each

coefficient contributes to the total forcing, and the total

movement is a summation of the forcing in all directions by all
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eigenvectors. Correlations are obtained for a dependent set

of 454 cases (or fewer for longer time intervals). Assuming

the motion and orthogonal coefficients are both distributed

normally, Chatfield (1980) shows the distribution of corre-

lation coefficients for uncorrelated variables is distributed

N(0,1/N). This means that any correlation of less than about

.09 is not significant (at the 95% level). Tables 4-6 and

4-7 give the correlations for zonal and meridional motion,

. respectively.

Most of the correlations agree nicely with the instan-

taneous forcing of the sigenvectors inferred from Figs. 4-2

to 4-11, although there are surprises. Perhaps the largest

surprise is the shift in meridional forcing in eigenvector 1

as the time interval increases. For times less than 36 hours,

the forcing is the anticipated south forcing. The forcing

at 48 and 60 hours is not significant, indicating the strength

of this pattern at this time level gives little infornation on

resultant 48- and 60-hour meridional motion. Between 72 and

84 hours, the forcing of this eigenvectir actually becomes

signficiantly northward from the mean 72 to 84 hour meridional

displacement. A possible explanation for this phenomenon is

that this pattern identifies recurving storms. During the

short term, the forcing is to the south, but even more strongly

to the west. The storm then crosses the mean meridional dis-

placement location after 48 to 60 hours, still well to the we.t

of the initial longitude. This is not to say the storm actually

moves north of the initial latitude, only that the storm moves
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Table 4- 6

Pearson product xoment (correlation) betveen the
or-ho ona; coefficient associated with the c civen eigenvector
and M zon4l lotion at 12 hour in rement. ositive
corre-ation imp1. s West forcin.. Also included U the
ins-ta.taneous xo ton anticipated from the form of the
eigenvectors a PFigs 1--2 to 4-11.

MODE aNTICIPATED TIRE INTERVAL

FORCING 12 24 36 48 60 72 84

1 WEST *.506 +.530 *.553 +.477? +.95 *.358 *.341

2 VEST -. 072 -. 061 -. 059 -. 051 -. 061 -.092 -. 079

3 EAS? -. 109 -. 103 -. 139 -. 0714 -. 049 -. 009 +.001

4 UAST -. 139 -. 412 -. 355 -. 373 -. 371 -. 361 -.340

5 VEST ,.301 *.27't +.283 #.252 -. 221 +.284 +.291

6 "AEST 2.101 +.084 ÷.039 -. 043 -. 037 -. 090 -.38'

7 VEST -. 087 -. 079 -. 093 -. 077 -. 098 -.358 -. 014

8 3aST -. 293 -. 253 -. 265 -. 208 -. 205 -. 240 -. 268

9 L6"TTLE -. 129 -. 095 -. 045 -. 151 -. 132 -. 125 -. 118

10 LITTLE -. 018 +.019 +.028 '.031 *.027 *.093 +.073
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TABLE 4 - 7

Similar to Table 4 - 6, except for meridional motion
and positive correlation implies northward forcing.

MODE ANTICIPATED TIRE INTERVAL
FORCING

12 24 36 18 60 72 84

1 SOUTH -. 199 -. 211 -. 242 +.017 *.056 +.194 *.312

2 SOUTH -. 213 -. 184 -. 175 -. 175 -. 158 -. 205 -. 164

3 NORTH ÷.362 *.359 +.339 +.262 *.214 +.178 +.061

4 SOUTH -. 183 -. 176 -. 141 -. 111 -. 080 -. 040 -. 012

5 NORTH *.075 *.034 +.017 *.009 -. 005 +.037 -.047

6 LITTLE -. 158 -. 163 -. 136 -. 068 -. 112 -. 102 -. 122

7 NORTH +.227 *.224 *.202 *.254 *.223 *.195 +.086

8 SOUTH *.a84 ÷.0814 ÷.071 +.021 *.040 -. 054 -. 003

9 LITTLE -.047 -. 050 -. 007 *.155 .. 176 +.210 +.194

10 SOUTH -. 141 -. 176 -. 207 -. 262 -. 200 -. 143 -. 193
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north of the expected latitudinal position at around 48 hours,

and then remains north of the expected position. The westward

forcing throughout the entire period is not inconsistent with

recurvature, due to the large initial westward displacement.

By the 72 hour time, the storm is north and west of the mean

track displacement at that time, due only to coefficient 1

forcing. The storm displacement from the base time location

is shown in Fig. 4-21 for all cases tt - have a 500mb coeffi-

cient 1 less than -9, while Fig. 4-22 is a graph of storm

displacement for those storms with a coefficient 1 greater

than +9. Recurvature is not seen immediately here, and more

sophisticated statistical analysis techniques are required to

verify the hypothesis preseated above. Nevertheless, these

two graphs show very nicely how the movement correlates with

the coefficient value.

The other correlations shown in Tables 4-6 and 4-7 are

consistent with thn inferred instantaneous motion obtained

from the eigenvectors. Eigenvectors 3 and 7 (along with 1)

have the largest correlation (forcing) on the meridional

motion. Eigenvector 1 has the greatest impact on the zonal

forcing, with vectors 4, 5 and 8 also showing significant

forcing. Surprisingly, eigenvectors 2 and 4 also correlated

significantly with the meridional motion. From the results

shown here, the anticipated forcing is in good agreement

with the actual motion, and justifies use of the coeffi-

cients as predictors in regression equations for the storm

motion.
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COF I BETWEEN -9 *NO -30

Fig. 4-21. Storm displacement from base time position,
in nautical miles for all storms with 500mb
coefficient 1 less than -9. 12-hour movement
is indicated by a cross.

ii.

"CO. I 3MC0b1C1tP IND .9

Fig. 4-22. Similar to Fig. 4-21 except these storms all
have 500mb coefficient 1 greater than +9.
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V. REGRESSION ANALYSIS

In the preceding chapter, it was demonstrated that the

orthogonal coefficients associated with eigenvectors give

qualitative insight to physical forcing mechanisms acting on

tropical storms. Therefore, it is hypothesized that it is

possible to use these coefficients to forecast quantitatively

tropical storm motion. A regression approach is appropriate

to investigate this hypothesis. Very briefly, regression

analysis involves using a linear combination of known quanti-

ties (predictors) to estimate the value of an unknown quan-

tity (predictand). Dixon and Brown (1979) give a concise

sun•nary of regrassion analysis, while Neter and Wasserman

(1974) provide theoretical background of the technique. In

the initial portion of this chapter, the model is developed,

with model results appearing at the end of the chapter.

It was decided that of the 504 total data cases available,

50 would be used as independent cases to test the resultant

equations. Use of 50 cases for the independent data set file

is arbitrary, but still gives a large dependent data set. In

the initial set of 504 cases, 185 cases had both complete

past histories (warning positions 36 hours prior to the base

time) and best track positions that extended to 84 hours be-

yond the base time. Of these 185 cases, it was decided to

hold 35 cases to comprise part of the independent set, leaving

150 cases with full history in the dependent set. The remaining
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15 independent cases were selected from the remaining cases

without complete history. All cases in independent data set

were selected randomly within their respective history sub-

sets. This process left 454 potential cases over which the

regression equations were formed. The fifty independent cases

are shown in Table 5-1. It will be shown shortly that the

actual number of cases used to derive the regression equa-

tions is less than 454, due to the specifications of the

predictors.

Predictands for this study are the 12- to 84-h zonal and

meridional displacements of the storms in 12-hour increments.

These distances are determined from the base time JTWIC warn-

ing position to the JTWC best-track position at the predic-

tand time. Positive motion is defined to the north and to the

west, since the majority.of the displacements are to the north

and west. As there are 14 predictands, 14 regression equa-

tions are required for each of the three pressure levels for

which synoptic data are available. Because the basic data

are only available at 12-hour intervals, and the analyzed maps

are delayed several hours, the forecast time must be carefully

distinguished from the guidance time. A 12-h forecast based

on OOOOGMT data is the forecast position valid at 1200GMT,

whereas a 12-h guidance based on the OOOOGMT data would be

issued several hours after OOOOGMT and would be valid 12 hours

after issuance. It is estimated that four hours would be

needed to prepare and issue the forecast. Hence, a forecast

issued based on OOO0GMT data could only be used in preparing
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TABLE 5 - 1

The independent storms; their dates of occurrenceosition and intensity, ana their past warning and future
best t-rack history.

HOURS
SAX PRIOR FUTURENAME YEAR MONTH/DATE TIME LAT LON WIND POSITION

I THERESE 1967 3 / 18 O00GHT 10.7y 139.93 40 36 842 VIOLET 1967 4 / 3 1200GET 10.91 138.3E 65 36 843 GEORGIA 1967 7 / 31 OOOGHT 22.01 136.73 35 36 844 GEORGIA 1967 8 / 6 O00GHT 35.9N 150.1z 50 36 24S OPAL 1967 9 / 10 O00GAM 26.61 140.4E 85 36 846 RUTH 1967 9/ 9 000GMT 27.1N 162.:E 55 37 DINAH 1967 10 / 19 888GMT10.69138 9 60 48 GILDA 1967 11 / I1 000GM? 10.61 152.9E 75 R6 819 JEAN 1968 4 / 9 1200GMT 10.6N 150.6Z 85 36 8410 KIM 1968 6 /•2 080GHT 17.5: 132.:JE 85 16 f411 WENDY 1968 8 / 31 G 20.5 141. 130 6 4612 AGNES 1968 8 / 31 1200GMlT 16.11 155.9E 75 36 8413 AGNES 1968 9 / 8 000GM? 23.4N 137.22 60 36 '48
114 DELLA 111J 888GHT 19: N 29:IE 195 36 8415 CRMENI0aGMT 18.31 14 2Z 0 36
16 JUDY 1968 10 26 1200GMT 11.0N 147.83 100 6 8417 JUDY 1968 10 29 1200GMT 16.6N 135.6E 105 36 7218 HELEN 1969 10 11 000GMT 23.7N 141.7E 95 36 3619 IDA 1969 10 / 18 000GHT 18.81 145.6E 90 36 8420 GRACE 1969 10 / I c00GMT 26.91 166.6E 70 12 4821 GRACE 1969 10 / 2 1200GMT 24.7N 162.83 70 36 842 BILLIE 1970 8 27 1280GHT 27.01 131.3E 110 36 4

JCAN 1970 10 14 12 0GMT 14.4N 117. Z 85 36 424 PATSY 1970 11 / 20 1200GMT 15.7N 114.7E 60 36 2425 .AEGE 1970 11 / 3 000GMT 14.71 116.93 55 24 6026 VERA 1971 4 15 1200GMT 18.2N 125.6E 85 36 4827 WANDA 1971 4 / 29 1200GMT 11.71 112.1E 40 36 8428 B! 1971 5 5 000GMT 19.21 119.3E 45 36 4829 LUCY 1971 7 19 1200GMT 18.11 124.7E 125 36 6030 TRIX 1971 8 22 1200GHT 25.7N 151.03 75 36 8431 TRIX 1971 8 / 25 1200GMT 25.21 142.9z 85 36 8432 VIRGINIA 1971 9 / 4 1200GMT 22.2N 136.9E 60 36 6033 WENDY 1971 9 / 9 1200GMT 24.1N 158. 105 ]6 6034 EMMA 1974 6 / O00GHT 15.71 127.31 40 6 4835 ?CLLY 1974 8 / 28 000GMT 19.8N 143.53 75 36 8436 AGNES 1974 9 / 26 1200GMT 24.9N 151.9E 50 36 8437 ELAINE 1974 10 / 27 OOOGMT 16.9N 127.1E 85 36 8438 GLORIA 1974 11 / 5 000GMT 15.6N 131.2E 85 36 8439 IRA 1974 11 / 24 1200GMT 14 .6N 134.33 70 36 84140 LOLA 1975 1 / 25 1200GMT 12.JN 117.03 4~ 36 4#41 RITA 1975 8 / 20 000GMT 26.5N 128.83 45 36 8442 GRACE 1975 10 /29 1200GHT 17.9v 128.8! 30 36 8443 RITA 1972 7 / 15 000GMT 21.1I 135.6E 80 36 844t5 TESS 1972 77 / 1200GM? 1.81 114.8lE 6 6
44 RITA 197j 7 / :128GT 11.8 Ij. 65 36 1

4S TES19 /1 00GMT .-N1. 11.7Z 110 H6 4
46 ALICE 1972 8 / 6 000GMT 30.2N 144.23 75 36 3647 OLGA 1976 5 16 1200GMT 12.31 129.8E 45 36 8448 SALLY 1976 6 / 28 O00GAT 19.4N 132.0E 100 36 8449 THERESE 1976 7 15 1200GST 22.4m 136.9E 120 36 8450 BILLIE 1973 7 / 15 000GMT 20.9N 125.3! 115 36 84
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the 0400GMT guidance. A 12-h guidance will then be valid at

1600GMT. To insure that an estimate of the position during

the next 72 hours is always available, forecasts are made to

84-h after the base time. All subsequent references to

times will be for forecast rather than guidance timing.

The potential predictors are identical for all of the 14

regression equations, with the exception of any predictors

that are a function of atmospheric level. Predictors are

sough- to assess quantitatively the effect of three different

features on storm movement: external (to the storm) physical

forcing, previous movement of the storm, and storm intensity.

Synoptic (and sub-synoptic) external forcing on the storm is

thought to play a large role on storm movement (Brown, 1981

and others). To incorporate the forcing quantitatively, the

orthogonal coefficients associated with the 10 retained eigen-

vectors for a particular data case are selected as potential

predictors. One of the primary objectives in this study is

to determine how well these EOF's represent large scale

features.

If the storm is to be forecast properly, prior motion must

also be accounted for (Peterson, 1980). It is necessary to

know toward which direction the storm is moving to determine

what portion of the external forcing will be affecting the

storm. To do this, twelve additional variables representing

past zonal and meridional displacements are added to the set

of potential predictors. All of the prior storm displacements

are based on warning positions to simulate operational
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conditions. The six variables for zonal motion are the prior

12, 24 and 36 hour zonal displacements of the storm, the zonal

displacements from 12 hours to 24 and 36 hours prior, and

finally the zonal displacementd from 24 to 36 hours prior to

the base time. The time frames for the meridional displace-

- ments are identical.

Storm intensity is the third storm characteristic sought

to assess quantitatively. The most preferable form of this

data would be a meso- or microscale analysis of the winds around

the storm. Since this is not available, the JTWC warning

maximum winds are used to indicate intensity. The intensity

data are available for the base time, and at 12, 24 and 36

hours prior to base time. Therefore, the complete set of

potential predictors includes four predictors for intensity,

12 for past movement and 10 for the physical forcing. Table

5-2 is a listing of the 26 potential predictors, along with

the names used to identiiy each predictor in this study. For

a data' case to be used in the formulation of the regression

equations, a complete set of potential predictors and the

proper preaictand had to be available. This decreased the num-

ber of cases available for computation of the regression equa-

tions. Actual valid case numbers ire presented with the

results of the regression. Since the number of potential

predictors is initially large, the resultant equations need

to be examined carefully to determine if any of these pre-

dictors may be excluded with little information loss. It is
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TABLE 5 - 2

Potential nredictors used to develop the =egression
eq ations. Th4 first tengpredictors are different for each
of the three pressure leve s.

POTENTIAL PREDICTOR NAZME DESCRIPTION
VARIABLE !IUM1BER

associated vith a genvector 1.
2 cof2 The o;thogon;l coefficient

associated with eiqenvector 2.
3 cof3 The orthoqonal coefficient

associated with ciienvector 3.

5 cof5 The o;thoqona 1 coefficient
associategdwith eijqenvector 5.

6 cof6 The orthogonol cogfficient
assoc atea with eiqeevector 6.

7 coti The othoqonal hcoefficient
assocl ate with eq envector 7.

8 cof8 The orthogonal coeoficient
associatel with eiqenvector 8.

9 cof9 The orthogonal coefficient
associated with ei qenvector 9.

10 cof91 The orthogonal coefficient
associated with eigenvector 10.

11 platf Storm latitude movementfor 12 hours before base time.
12 plat2 Storm latitude movementfor 24 hours before base time.
13 plat 3 Storm latitude movement

for 36 hours before base time.
14 plat4 Storm latitude movement from

24 to 12 hours before base time.
15 plat5 Storm latitude movement from36 to 12 hours before base time.
16 plat6 Storm latitude movement from

36 to 24 hours before base time.
17 ploa6 Storm lonaitude movement

for 12 hours before base time.
18 plon2 Storm longitude movement

for 24 hou;s before base time.
19 plon3 Storm longitude movement

for 36 hou;s before base time.
20 plon4 Storm longitude movement from

24 to 12 ours before base time.
21 plonS Storm longitude movement from

36 to 12 iours before base time.
22 plon6 Storm jongitude movement from

36 to 24 sours before base time.
23 aawO Storm warning maximum wind at

forecast base time.
24 aavl Storm warning maximum wind 12hours prio; to base t4la.
25 amw2 Storm va;ninq maximum tind 21

hours prior tO Dase t:me.
26 auw3 Storm warning maximum wind 36

hours prior o base time.
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desirable to have as few potential predictors as possible.

Therefore, if it is determined that any of the potential

predictors add little to the equations, they should be drcpped

from the developmental set, and the equations should be

rederived over the smaller set of predictors.

The next decision is how to use the predictors to create

the equations. Two primary possibilities exist: all possible

predictors or stepwise regression. All possible predictor

regressions use all predictors at once to form the regression

equations. In this study, all 26 predictors would be used

to formulate the equations. A stepwise regression creates

the regression equations by adding (or deleting) one predictor

per step. At each step, the single predictor that is most

highly correlated with any residual error from the previous

step is added to the predictors used, and the equations (and

residuals) recomputed. This process continues until no addi-

tional predictors meet a pre-assigned significance tolerance

level. Dixon and Brown (1979) give further details of the

procedure. Typically, not all potential predictors are used.

A stepwise screening procedure is used here for two funda-

mental reasons. First, a stepwise procedure extracts maximum

information out of minimum variables, and variables that add

little information are not used. Second, and more impor-

tantly, Neter and Wasserman (1974) show that if two or more

potential predictors are highly correlated, retention of both

may have a deleterious effect on interpretation of the equations.
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The problem is called multicollinearity. Statistically, the

effect is to have little additional reduction in the total

explained variance, while decreasing the degrees of freedom

in the equation. Since at least some of the potential predic-

tors are highly correlated, multicollinearity could be a prob-

lem. By using a stepwise regression approach, the problem is

clr.mvented. Whenever a stepwise regression scheme is used,

a decision on how many predictors are to be used needs to be

made. Two possible approaches are to use a predetermined num-

ber of predictors, so that the number of terms in each final

equation are identical, or to use all terms that meet a pre-

determined significance tolerance level. For this study,

all predictors that significantly reduce the variance are

included in the equations, so that the number of terms in the

various equations differs. A tolerance level (F-ratio) of

4.0 is used for this study (Dixon and Brown, 1979).

Finally, the form of the equations, either linoar or

polynomial, must be decided. The simplest type of polynomial

regression involves using all first-order predictors, and

nonlinear combinations of the first-order predictors in the

model. For instance, if there are 10 initially defined poten-

tial predictors, then the set of predictors used in polynomial

regression include all 10 first order terms, all 10 second

order (squared) predictors, plus the 45 nonlinear products of

all potential predictors. The use of polynomial regression

may occasionally be of aid in fitting the predictors tc the
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predictands when nonlinear cause and effect is anticipated.

Neumann and Leftwich (1977) use a second order polynomial

regression to forecast typhoon movement, although their pre-

dictors do not include synoptic forcing explicitly. With 26

potential predictors, as in this study, the number of poly-

nomial predictors becomes unwieldy. A further justification

for not using polynomial regression is that the predictands

give no evidence of interacting nonlinearly with the predictors.

In summary, 14 linear ragression equations are to be formu-

lated for each atmospheric pressure level, with predictands

being 12- through 84-h zonal and meridional displacements

(in nautical miles) in 12-hour increments. Predictors will

be selected stepwise from a set of 26 potential predictors

over 454 (or fewer) dependent data cases. 50 cases have been

held back to test the equations.

The regression equations are calculated using the Uz.iver-

sity of California BMDP computer routine linear stepwise

regression (Dixon and Brown, 1979). Before presenting the

equations, their ability to explain variation in the predic-

tand is examined by use of R2 statistic. This quantity may

be interpreted as the percent explained variance in the pre-

dictand by the regression equation (using the dependent data

cases). The R value for each regression equation is shown

in Table 5-3.

Several properties are immediately seen from the R2 values.

First, the zonal equations appear to explain a greater portion
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TABLE 5 - 3

SamplR size and R statistic for each zonal and meridional
regression equatiou by forecast time and ataosphc-ic level.

?ORECAST INTERVAL (HR)

12 24 36 48 60 72 814

NUMBER OF
DEPENDENT 351 351 329 256 233 163 150
DATA CASES

ZONAL EQUATIONS

500ob .794 .725 .685 .613 .568 .556 .444

700mb .791 .719 .680 .600 .558 .550 .310

8502b .784 .712 .651 .571 .519 .535 .384

MERIDIONAL EQUATIONS

500ab .522 .476 .404 .354 .255 .315 .208

700mb .540 .486 .419 .347 .285 .252 .184

8502b .502 .463 .365 .323 .255 .259 .103
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of the total (zonal) movement variation than do the meridional

equations. Over 75% of the total (zonal) variation in the

12-h movement is explained by the equations at each of the

three atmospheric levels. The maximum meridional variation

explained (54%) is for the 12-h movement using 700mb EOF

coefficients. Matching forecast times and levels (excluding

the 84 hour forecast from the 700mb equations), the zonal R2

is always at least .24 greater than the meridional R2 for the

same time period and level. The increased ability of the zonal

equations is expected because there is greater variation in

the zonal movement than the meridional movement. The means

and standard deviations of the zonal and meridional displace-

ments at the various forecast times are shown in Table 5-4.

TABLE 5-4

Means and standard deviations of the predic-
tands (in nautical miles) for the dependent

sample. See text for details.

FORECAST TIME (HOURS)

12 24 36 48 60 72 84

Meridional
displacement

mean 56 119 181 223 282 316 353
standard (50) (100) (150) (165) (221) (230) (267)
deviation

Zonal
displacement

mean 51 93 129 195 225 307 372
standard (81) (176) (258) (309) (376) (396) (449)
deviation
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The mean movement for both directions is roughly the same

magnitude, and indicates an average track ;oward the north-

west. A more significant difference in the motion is seen in

the standard deviations, which are larger for the zonal motion

than for the meridional motion. As both the zonal and merid-

ional components contribute approximately the same error

magnitude in the regression equations, .ne R2 for the zonal

motion will be significantly greater since there is more

variance to be explained.

The second property seen immediately in the R2 values in

Table 5-3 is that they decrease rapidly in time for each

pressure level. For the 500mb equations, a general rule of

thumb is that the R2 decreases by a value of .05 per 12 hour

increment. It is further seen (Table 5-4) that the standard

deviation of displacement increases every 12 hours, heighten-

ing the significance of the decrease of the R2 in time. Simply

stated, the equations predict movement well in the short term,

but the errors grow rapidly with increasing time.

The final property seen in the R2 values is that the

accuracy of the equations is not a strong function of the

atmospheric level in the dependent sample case. The 500mb

R2 values are generally larger than at the other two levels,

although these differences are not significant. A Student's

t-test, assuming non-identical variacnes in the population,

was conducted with the null hypothesis that there is no

significant difference in the R2 values at the various levels.
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In no case was the test statistic significant at even the

alpha equal .75 level. Therefore, the null hypothesis is

accepted that over the dependent sample there is no differ-

ence in performance of the equations at the different atmos-

pheric levels.

Tables 5-5 and 5-6 present the regression coefficients

of the 500mb equations by direction of movement. For example,

the 500mb meridional regression coefficients for all seven

forecast times are given in Table 5-5. The first value given

is the intercept. The final regression equation prediction

of displacement is obtained by summing over the product of

all non-zero regression coefficients and the variable asso-

ciated with the coefficient. None of the 500mb equations

use more than 10 predictors. In seven of the 28 equations,

six or fewer predictors are used. Therefore, these equations

are very simple to use. A past movement variable was always

the first variable selected in the stepwise procedure, so

persistence does play a role in the predicted movement. The

predictions are not simply persistence forecasts, however,

since in general four or five EOF coefficient predictors are

chosen in each equation. Therefore, forcing also plays a

crucial role in the storm movement. Finally, maximum wind

predictors are of little consequence in the final equations,

indicating little impact on the 12-h (or greater) time scale

storm motion (excluding short term trochoidal path oscillation).

The resultant equations for the 700 and 850mb data are shown

in Appendix B. It is also noted that of the potential
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TABLE 5 - 5

iegressiof coafficiaflt for the seven Waidiotal
equation$ Using 500mb ZEOID. 

A value of .indicatsS

*ne predictor was not sale'e U the stepVise seectbof
procedure.

pORECAST VALID FOR BASE TIME PLUS 8)UPS

12 24 36 48 60 72 84

intercept 38.334 70.789 123.114 117.334 214.492 182.098 297.612

Cofl .0 .0 -2.886 0 .0 9.738 20.376

Cof2 -2.234 14.135 -6.148 -5.649 -6.63J -11.960 .0

Cof3 3.8'48 8.781 13.491 12.635 12.677 11.923 .0

Cof0 -2.641 -5.799 -.3169 .0 .0 .0 .0

Cofs .0 .0 .0 .0 .0 .0 .0

Cof6 -2.535 -5.279 i7.191 .0 -2o.631 .0 0.

Cot 3.182 6.502 10 0 17.320 26.948 20.028 .0

Cof8 .0 .0 o0 .o0 0 .0

Cof9 .0 .0 .0 12.293 18.113 24.462 28.487

Cof1o -2.618 - 8.975 -18.292 -16. 197 0 .0 .0

platl 0 0.634 0 652 1.068 1.405 1.247 .0

Plat2 0:358 .0 .0 0 0 .0 0:.56

o3at3 .0 .0 .0 .0 .0 .0 .0

P3at4.0 -0.286 .0 .0 .0 .0 .0 .0

Pla-:5 .0 .0 .0 .0 .0 .0 .0

Pla4t6 .0 .0 .0 .0 .0 .0 .0

Plonl 0.2116 0.502 0.257 .0 .0 ,0 .0

9lon2 -0.038 -0.158 .0 .0 .0 0 .0

lPlon3 .0 .0 .0 .0 .0 0:197 .0

plonO .0 .0 .0 .0 .0 .0 .0

PlonS ,0 .0 .0 .0 .0 ,0 0.332

plon6 .0 .0 .0 .0 .0 .0 .0

xmvO .0 0 0 .0 .0 .0 .0

ASw 20 0.319 0.0518 0.685 .0 1.351 0

Amw2 .0 .0 .0 .0 .0 .0

Amw3 .0 .0 .0 .0 .0 .0 .0

99



ALZ 5 - 5

Regression coefficients for the Z•vsA zonal
equations using 50(Ab EO is. .A value of .0 indicates
the predictor was not selected in the stepvise selectii:"
procedure.

FORECAST VALID FOI BASE T.:E PLUS HOURS

i: 24 36 48 60 72 84

Intercept 16.027 37.064 36.833 105.903 216 .515 168.503 206.962
Cof,' 2.678 6.6o4 13.668 18.466 Z6.153 19 369 27.91V:
Co-f' .0 .0 .0 .0 .0 .0 .0
Cof3 .0 .0 -6.104 .0 .0 .0 .0
Cof'4 -3.635 -7.783 -11.698 -21. 2 -32.626 -(48.063 -'1. 194
Cof5 '4.239 8.460 12.385 11.014 .0 24.4153 32.448
Cof6 .0 .0 .0 .0 .0 .0 .0
COf7 0 -128-:32-26 2:2.0 .0
Cof8 -7.48' 1 - -41:319 -58.377
Cof9 .0 .0 .0 .0 .0 .0 .0
Cof10 .0 .0 13.350 .0 .0 34.037 .0
M1at1 .0 .0 .0 -0.758 -1.058 .0 .0
Plat2 .0 .0 .0 .0 .0 -0.660 -0.836
Plat3 .0 .0 .0 .0 .0 .0 .0
Plat(4 .0 .0 .0 .0 .0 .0 .0
lat5 . ( .0 C .0 .0 .0 .0

?lat6 .0 -n.234
Plonl -0.626 -1.232 -1.:93 - 1:82 -1: 19 -1:398 -1.542
Pton2 .j .0 .0 .0 .0 .0 .0
?lon3 .0 .0 .0 .0 .0 .0 .0
Plor.i .0 .0 .0 .0 .0 .0 .0
Plons .0 .0 .0 .0 .0 .0 .0
01.on6 .0 .0 .0 .G .0 .0 .0
AiWG .0 .0 .0 .0 .0 2.179 .0
AMvI .0 .0 .0 .0 .0 .0 .0
Amv2 .0 .0 .0 .0 -1.165 .0 .0
Amy3 .0 .0 ,0 .0 .0 -2.113 .0
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predictors, very little information would be lost by

excluding all past displacement variables except for the

12-h period prior to base time. Additionally, of the

intensity predictors, the most frequently selected was the

12 hour prior intensity. Therefore, it was decided to re-

derive the equations using only 13 potential predictors

(the 10 coefficients at the given level, Platl, Plonl and

Amwl). Results of the equations, in the form of R' statis-

tics, derived on the smaller set are given in Appendix 3.

The remainder of the results presented in this chapter refer

to the equations derived using the complete set of all 26

potential predictors.

Results presented thus far have been drawn from the

regression equations using the dependent data set. A true

test of a regression equation comes through testing with

independent data. This testing is critical in determination

of accuracy of the model. The JTWC annual typhoon report

publishes, in addition to best track and warning positions,

the forecast errors for 24, 48 and 72 hour forecasts. The

regression model was tested with the independent data and

is compared to the official JTWC forecast error, which

serves as a benchmark. Of the 50 independent cases, only

45 have JTWC official forecasts at 24 hours, 31 have offi-

cial forecasts at 48 hours and only 17 at 72 hours. Admit-

tedly, the sample size of the independent storms is quite

small, but inferences on aptness of the model may still be
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drawn. Both the complete set of results for the independent

storms, and the homogeneous set where both jTWC and the

regression model errors are available will be shown.

The overall performance (Table 5-7) of the regression

equations on the entire set of 50 independent cases is first

examined to determine if there is consistency in the fore-

casts (indicated by small standard deviations) and to deter-

mine in general how well the equations forecast the motion.

TABLE 5-7

Mean and standard .eviation forecast vector error
(nautical miles) .f 24, 48 and 72 hours for the
set of 50 independent storms.

HOUR FORECAST

24 48 72

Sample size 50 43 36

500mb forecast error
mean 88.4 176.4 277.4

standard deviation 62.5 113.5 167.4

700mb forecast error
mean 110.1 189.3 318.7

standard deviation 91.3 120.5 178.7

850mb forecast error
mean 114.9 205.4 358.0

standard deviation 105.8 146.1 219.2

The 500mb equations outperformed the other two equation sets

by a wide margin, which is surprising. SimilAr differences

between levels did not appear in the errors of the dependent
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sample, given in Table 5-8. A possible explanation is that

there is a greater variation in the synoptic forcing fields

at 500mb. This allows the 500mb equations to be less suscep-

tible to large forecast errors in cases where the predictors

have extreme values. It turns out that with few exceptions,

the 700mb errors are similar to the 500mb errors. Where the

700mb equations performed poorly, the results were much

worse than the 500mb equations. Therefore, it appears that

(at least over the independent cases) the 500mb equations

have a smaller likelihood to give a large forecast error.

This hypothesis needs to be tested more thoroughly as addi-

tional data becomes available.

TABLE 5-8

Mean and standard deviation forecast vector error
(nautical miles) of 24, 48 and 72 hours for the
set of 454 dependent storms.

FORECAST INTERVAL

24 48 72

Sample size 351 255 164

500mb forecast error
mean 91.5 203.3 298.7

standard deviation 72.7 113.7 152.4

700mb forecast error
mean 92.6 210.6 293.7

standard deviation 71.9 115.8 121.5

850mb forecast error
mean 95.2 210.7 383.4

standard deviation 71.6 121.5 232.2
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The next step in examination of the independent data

results is to compare the results of EOF regression forecasts

to the official JTWC forecasts, for those cases that this is

possible. The mean and standard deviation errors for these

valid cases, and the benchmark JTWC official forecast error

statistics are shown in Table 5-9. A superior 500mb scheme

is again evident. More importantly, it is seen the standard

deviation of error for the EOF regression scheme is less

than Zor the JTWC official forecasts, which indicates the

EOF regression scheme is less likely to have a large forecast

error. The combination of small mean error and small standard

deviation indicates the EOF scheme outperforms the JTWC

official forecast. The 700 and 850mb equation forecasts were

again poorer than the 500mb fQrecasts, and appear to be about

equal to the JTWC forecasts.

Finally, the EOF regression scheme is coarmared to the

JTWC official forecast on a case-by-case basis in Figs. 5-1

through 5-9. Any points lying above the straight line on

the graphs represent cases in which the EOF scheme out-

performed the JTWC official forecasts. The 850mb results

(Figs. 5-3, 5-6 and 5-9) show little differences between the

schemes. The 700mb equations (Figs. 5-2, 5-5 and 5-8) show,

in general, a better forecast by the EOF scheme, as a bulk

of the points lie above the no difference line. The overall

comparison statistics appear to have been affected by a few

large forecast errors, especially at 24 hours. This tendency
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Fig. S-1. Comparison of the forecast error for the inde-
pendent data cases. Schemes compared are the
500mb EOF regression scheme versus the JTWC
official forecast, for a 24 hour forecast.
Units are in nautical miles.
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Fig. 5-2. Similar to Fig. 5-1, except the 700mb iOF

regression forecast is compared to JTWC official
fical focr a 24-hour forecast.
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Fig. 5-3. Similar to Fig. 5-1, except the 850mb EOF
regression forecast is compared to JTWC ufficial
forecast for a 24-hour forecast.
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Fi g. 5-4. Similar to Fig. 5-+1, except the 500mb EOFregression forecast is compared to JTC official

forecast for a 48-hour forecast.
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Fig. 5-5. Similar to Fig. 5-1, except the 700mb EOF

regression forecast is compared to JTVIC official

forecast for a 48-hour forecast.
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Fig. 5-6. Similar to Fig. 5-I, except the 850mb LOF

regression forecast is compared to JTWC official

forecast for a 48-hour forecast.
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Fig. 5-7. Similar to Fig. 5-1, except the 500mb EOF
regression forecast is compared to JTWC official
forecast for a 72-hour forecast.
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Fig. 5-8. Similar to Fig. 5-1, except the 700mb EOF
regression forecast is compared to JTWC official
forecast for a 72-hour forecast.
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Fig. 5-9. Similar to Fig. 5_1, ecept the 850 mb EOF

regression forecast is compared to JTWC

official forecast for a 72-hour forecast.
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toward large errors does not appear as dramatically in the

500mb forecasts (Figs. 5-1, 5-4 and 5-7). The superiority

of the EOF forecasts to the JTWC official forecasts needs

to be examined over a larger set of independent data.

One final point of interest on these figures is that

both the 48-hour 850mb and 72-hour 700mb forecasts have an

unusually shaped clustering of EOF regression errors at

about the 150 n mi error level. No physical explanation

for this clustering is known. It is very likely the event

is an artifact of the data. It is, nevertheless, interesting,

and worth closer examination as more data become available.

A final graphical representation of the differences in

forecasting methods is shown in Figs. 5-10 through 5-12.

These graphs are divided by atmospheric level, and on each

are the JTWC error over the independent sample, the EOF

regression forecast over the complete and horogeneous inde-

pendent sample as well as the EOF forecast over the dependent

sample plotted as a function of forecast time. Once again,

the EOF regression scheme forecast appears superior over both

the short and long term for the 500mb equations.
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Fig. 5-10. Comparison of the JTWC official forecast
over the independent data set, as well as
the complete and homogeneous independent
EOF regression set and the dependent set
errors. All EOF results computed from
500mb equations.
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Fig. 5-11. Similar to Fig. 5-10, except EOF regression
results obtained from 700mb equations.
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Fig. 5-12. Similar to Fig. 5-10, except EOF regression
results obtained from 850mb equations.
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VI. POTENTIAL FOR USE WITH INDEPENDENT DATA

Based on the results of the previous section, it appears

that EOF regression forecasting has potential for improving

forecasts of tropical storm movement. Using a limited inde-

pendent data set, the method has been shown to be an improve-

ment on the JTWC official forecasts. There are still

unanswered questions concerning use of the model operationally

on independent storms. The regression equations were derived

using orthogonal coefficients derived from one set of eigen-

vectors. The regression equations derived are strictly valid

*/ only for tropical cyclone cases in which the coefficients

are obtained from these identical vectors, so that the coef-

ficients have a consistent meaning for each storm. If a new

case is added to the dependent set, the set of vectors no

longer exactly explains the maximum variat.. all of the

observations. Therefore, the stability of the eigenvectors

and coefficients must be examined by determining whether the

vectors and coefficients remain nearly the same if additional

cases are added. This stability will be examined theoretical-

ly, and by a simplified experiment.

The set of dependent eigenvectors is defined as those

vectors obtained from the original data set. Independent

vectors are obtained from the combined set of original

dependent cases plus the new independent case. If the
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eigenvectors for the dependent data set are very close to

the eigenvectors for the independent set, then little error

will be introduced by using tht dependent eigenvectors to

compute the coefficients for the independent case. In this

case, the independent case coefficients may be used directly

in the regression equations as initially derived. If the

"eigenvectors are not consistent, the regression equations

must be re-derived for every new forecast, including the

recomputation of a new set of eigenvectors and coefficients

using all data cases. Because of the large amount of compu-

tation in this case, it is highly desirable that the coeffi-

cients and vectors are consistent for independent data.

As in Chapter III, the eigenvectors are derived from

solving the eigenvector equation using the known matrix

where R is the correlation matrix of the normalized grid

points:

S= ~aN".()

R is a square matrix of order equal to the number of dimen-

sions (grid points), M. The set of eigenvectors constructed

over the dependent sample should theoretically be stable if

N (number of individual cases) is large. That is, addition

of a single independent case should have very little effect

on the shape of the observation surface in space. Inclusion

of an additional data case changes • by:
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RNEW 1 |N+ 1 -OLD + Tml

where RNEw is the new (independent) correlation matrix after

addition of the new observation case, ROLD is the original

(dependent) correlation matrix, N (N+l) the number of cases

prior to (after) inclusion of the new case, and a is the

(M X 1) vector of normalized D-values for the independent

case. If N is initially very large, the term 1 a a' in
N+l--

(2) is negligible compared to the first term, since the

normalized observation elements are rarely greater than two

or three. Therefore, to a very close approximation,

ANEW OLD ' (3)

and the eigenvalues and vectors obtained from the dependent

data should be almost identical to those obtained over all

cases.

The above theory was tested with 500mb data using

dependent samples of N = 50, 100, 150, 200, 300, and 400

cases with 33 independent cases. The 33 independent case

orthogonal coefficients were computed in two ways:

(1) As a control, the independent cas-.. was added to the

dependent sample, R computed, and the true eigenvectors and

orthogonal coefficients recalculated. Therefore, 33 separate

sets of eigenvectors were computed. The eigenvectors and

orthogonal coefficients are the values that minimize the

deviation from the mean state for all of the data.
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(2) The test method involved computing the eigenvectors

only once from the dependent set (N cases). These vectors

were then used to compute the orthogonal coefficients for

the independent cases. If regression equations are not to

be re-derived for every new operational forecast, the coeffi-

cients in the test method should be nearly identical to

those from the control.

Method (2) requires considerably less computer time;

however the question is whether the coefficients are suffi-

ciently accurate. Only the first ten coefficients are

examined since they represent the primary contribution to

the 500mb height fields. The comparison for the first four

coefficients are shown in Figs. 6-1 through 6-4. The

quantity

Yi = ABSOLUTE VALUE (Cofi1 - Cofi ) (3)

is summed over the 33 independent cases. Cof.i is the ith

coefficient (1 to 10) computed using method (1) and Cof.

is the ith coefficient computed using method (2). The first

two moments of Yi are examined to determine the stability of

the coefficients. As N increases, the standard deviations

of the differences in the coefficients should become smaller.

The expected "funnel-shape" with increasing N is seen

clearly in the first orthogonal coefficient (Fig. 6-1),

while coefficients 2 and 3 (Figs. 6-2 and 6-3) tend to have
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Fig. 6-1. Comparison of coefficient I derived over

dependent and independent samples. See text

for details. On the figures, the middle line

is the mean and the outer two lines the 95%

confidence intervals (plus/minus two standard

deviations). The x-axis is the number of cases

used.
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Fig. 6-2. Similar to Fig. 6-1 except for coefficient 2.
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Fig. 6-3. Similar to Fig. 6-1 except for coefficient 3.
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the expected shape only for N greater than 100. For the

N = 50 case the mean error for both coefficients 2 and 3

is very large compared to the coefficient size (normally

less than ten). This indicates the first three coefficients

may be derived from the dependent set of eigenvectors deter-

mined from as few as 100 cases. An unexpected result is

found with the fourth coefficient (Fig. 6-4), when N = 400

(also at N = 100). The large standard deviation indicates

that at least some of the independent cases have very large

error in this coefficient. A similar indication of unstable

coefficients also occurs in the sixth, seventh and eighth

coefficients.

The source of the error in the calculation of the coeffi-

cients was found to be due to the structure of the charac-

teristic equation. Any single vector that is a solution

eigenvector additionally represents infinite other vectors

that are also solutions, and which differ only by a constant

scaling factor (positive or negative). In EOF analysis, the

coefficients depend upon the numerical values (and signs) of

the eigenvectors. If one or two of the vectors change signs

during numerical solution of the eigenvectors, then the

coefficients must also reverse, which changes the EOF

reconstruction. It is important to notice that the sign

reversal actually occurs in deriving the new eigenvectors

when the new independent case is added. In certain cases,

the sign of the coefficient changes, although the magnitude
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of the coefficient remains almost the same. In the cases

in which some of the eigenvectors reversed signs, the error

between coefficients is large. Even for these cases, the

difference in the absolute values of the coefficients

remains small. This is demonstrated in Fig. 6-5, in which

the coefficient 4 differences are based only on the magnitude

of the coefficients from the control and test methods. Large

errors in the other coefficients are similarly reduced when

the error differences are between absolute values of the

coefficients. Once the eigenvectors and coefficients are

derived from the dependent set, and the associated regression

equations are generated, this set of eigenvectors must be

used with any independent cases. Even though the dependent

set may be quite large, the addition of a single new case

will introduce the possibility of a sign change in one of

the eigenvectors, and a reversal in sign of the coefficients.

This would invalidate the original regression equation set,

and require a re-derivation of both the eigenvectors and

the regression equations with each new entry into the

sample.

The reversal in sign of the coefficients and vectors is

probably due to computer round-off error. Solution of a 120

dimension eigenvalue problem requires simultaneous solution

of 120 homogeneous equations--which is an extremely ill-

conditioned problem (Gerald, 1977). The probability of

catastrophic round-off error increases dramatically as the
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number of dimensions increase. However, this reversal

problem is not significant in the study, as long as the

coefficients for independent cases are calculated from

dependent eigenvectors.

Further attempts to isolate the conditions under which

this reversal occurs were without success. Random tests

were conducted in 3, 5, 9 and 20 dimensions. Not until

dimension size reached 20 were the first reversals noticed.

The fact that the reversal does not occur until higher

dimension systems are used is consistent with the argument

above, because the greater the number of dimensions, the

greater the probability for catastrophic round-off error.

Because the coefficients calculated by the two methods

have consistent magnitudes, it may be concluded that the

coefficients computed for independent cases using the same

dependent eigenvectors will introduce very little error t'

the movement forecast. Thus, implementation of these EOF

regression forecasts with independent cases becomes straight-

forward. Only two major operations are required. First,

the EOF orthogonal coefficients from the dependent set of

eigenvectors are stored. This involves multiplication of

a (10 X 120) cranspose matrix of truncated eigenvectors and

the (120 X 1) normalized observation vector, which gives

the ten coefficients. The second step involves simple

substitution of the independent coefficients into the

regression equations. The same eigenvectors and eigenvalues

123

Il I I I . . . .' . .. . . I J . . . . .

ii



may be used indefinitely on independent storms, although it

is recommended the regression equations be updated at the

conclusion of each typhoon season.
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VII. CONCLUSIONS AND FUTURE APPLICATIONS

It has been shown that EOF coefficients correlate

strongly with the observed motion. Therefore, use of EOF

coefficients to represent the geopotential patterns in the

environment of a tropical cyclone appears to be a valid

approach for incorporation of synoptic information into a

statistically based forecast. Incorporation of synoptic

forcing by using EOF coefficients appears to have potential

in forecasting tropical storm motion. Using an independent

sample, an average of 17% improvement relative to JTWC

official motion forecasts was obtained using the 500mb EOF

regression equations. The use of 500mb equations gave

better forecasts than either the 700mb or 850mb equations.

In contrast, Brown (1981) found no significant difference

in forecast ability in a map-typing forecast technique using

the same three atmospheric levels. Since this is only a

pilot study, the good results shown here need to be tested

further with new data cases. Several conclusions and future

applications are drawn from this study.

(1) The regression equations were developed with a fairly

small dependent data sample, and yet gave good results when

tested with an independent sample. As the number of useable

storm cases for the dependent sample increases, the regres-

sion equations should become progressively more refined. As
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the dependent data size increases, in any regression scheme,

more extreme cases are typically forecast better. Large

forecast errors should occur less frequently with a larger

data sample.

(2) This method of incorporating synoptic fields into the

regression equations is not limited to observed fields. It

is likely that coefficients derived from a 24-hour forecast

field (from dynamic numerical weather prediction models)

would improve the long range forecast. As seen in the study,

the accuracy of the regression equations decreased sharply

in time. This study used only the current observed field.

After 24 to 36 hours, it is expected that the forcing from

the mid-latitudes would be significantly different. Use

of a 24 hour prognosis field might give a better representa-

tion of the forcing in the long-range forecast.

(3) The model is extremely simple. Using only values

representing the synoptic forcing in a limited grid region

about the storm, past storm movement and an intensity

measure (which proved to be of little value), the forecasts

appear to be very good. If variables representing other

physical features thought to impact storm movement are

incorporated into the regression equations, even better

forecasts should be possible. It is possible that the phase

of equatorial planetary waves near the storm, and other

large scale circulation features may play a role in tropical

storm movement. These waves are not easily detected.
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Holton (1972) notes that these waves are usually only

identifiable in the stratosphere, although they extend

throughout the troposphere and stratosphere. It is possible

that these waves could be identified using an EOF analysis

of the global band in the tropics at a mid-tropospheric

level. For instance, a global tropical grid, with coverage

to about 300N and 300 S may be adequate to identify these

waves (which would probably be seen in the first 5 to 10

eigenvectors). These EOF coefficients could then be

incorporated into the regression equation. A global grid

could also possibly detect features such as the Walker

circulation, and these features could be incorporated into

the regression forecast. A better storm intensity than the

maximum wind used in this study needs to be found. Variables

such as the radius of maximum winds should be tested as the

data become available. The potential predictors that could

be included are certainly not limited to those mentioned

above.

(4) The model was developed for use in the western North

Pacific Ocean genesis basin, although the method could be

developed for other genesis regions. The only difference

in the different regions would be in the values of the

regression coefficients.

(5) Rotation of eigenvectors could also be tried to

improve the model. If this were to be done, the number of
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retained vectors would have to be larger, to prevent against

underfactoring.

(5) Application of the EOF scheme in its present form

would be a simple matter. In fact, if the regression

equations were updated only once a year, the entire forecast

could conceivably be obtained on a hand-held programmable

calculator with sufficient memory to store the mean and

standard deviation of the grid points and all eigenvectors.

Entry of the data at the 120 grid points is all that would

be required to generate the movement forecast. The grid

point data might be obtained using a Bessel linear inter-

polation from the 63 X 63 FNOC analysis. Therefore, the

scheme could be implemented for operational use with a

minimum effort.

In conclusion, the EOF regression scheme shows great

promise for improvement of operational forecasts of tropical

storm movement. In this pilot study, using a very simple

model, the scheme performed very well. Potential improvement

is possible through addition of more sophisticated physical

forcing parameters and forecast dynamic fields that may

affect storm movement. .Further research in this area is

definitely warranted.
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"APPENDIX A

700 AND 850MB EIGENVECTORS

The first 10 eigenvectors for the 700 and 850mb level

follow. These are the vectors used in deriving the coeffi-

cients used in the regression equations.
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Fig. Al-].. Eigenvector 3.elements (multiplied by 100) at

700mb with the tropical cyclone 
located at the

Fig. Al-2. similar to Fig. Al-l except 
for eigenvector 2.
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Fig. Al-3. Similar to Fig. Al-i except for eigenvector 3.

a

Fig. Al-4. Similar to Fig. Al-i except for eigenvector 4.
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Fig. Al-6. Similar to Fig. Al-I. except for eigenvector 6.
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Fig. Al-7. Similar to Fig. A]-]. except for eigenvector 7.

Fig. Al-8. Similar to Fig. Al-]. except for eigenwector 8.
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Fig. AI-9. similar to Fig. Al-i except for eigenvector 9.

Fig. Al-lO. Similar to Fig. Al-i except for eigenvector 1.0.
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Fig. Al-il. Similar to Fig. Al-i except for 850mb level.

o I

Fig. AI-12. Similar to Fig. Al-il except for eigenvector 2.
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Fig. Al-13. Similar to Fig. Al-11 except for eigenvector 3.
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Fig. Al-iS. Similar to Fig. Al-il except for eigenvector 5.

*Fig. Al-16. Similar to Fig. Al-1i except for eigenvector 6.
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Fig. Al-17. Similar to Fig. Al-li except f or eigenvector 7.

Fig. Al-18. Similar to Fig. Al-li except for ,igenvector 
8.
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Fig. Al-19. Similar to Fig. Al-1i except for sigenvector 10.
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APPENDIX B

REGRESSION COEFFICIENTS FOR 700 AND 850MB

The regressiin coefficients for the 700 and 850mb equations
follow.

TABLE B - 1

Regression coefficients for the seven meridional
equat:.ons using 700mb ZOPs. A value of .0 indicates;e pradictor was not selected in the stepwise
selection procedure.

FORECAST VALID FOR BASE TIRE PLUS HOURS

12 24 36 48 60 72 84

Interctpt 33. 85 55.890 101.502 113.129 226.641 257.266 340.398
Cofl .0 -1.784 -3.988 .0 .0 0 19.739
Cof2 -1.630 -3.775 -6.681 -3.812 -7.215 -7:605 .0.
Cof3 -I,807 -:1 9 11: 90 -14:186o -17.o901 -22: 05

Cof5 a .0 .0 .0 .0
Co6 -. o r:86 -16.118 9.909 J3:859 :0 .0

2 .0 4.2 8 7.84 17.866 24.736 32.436
Cof8 .0 .0 ., .0 .0 .0
Cof9 -5.307 -10.641 -15.707 .0 .0 .0 .0
Coflo .0 -5.012 -9.934 .0 .0 .0 .0
?latl .0 0.713 0.82,4 1.279 1.731 1.463 .0
?Jat2 .389 .0 .0 .0 0.59Plat3 .0 .0.8 .0 .: .0 .0
Plat4 -0.306 .0 .0 .0 .0 .0 .0
Plats .0 .0 .0 0 .0 .0 .0
Plat6 .0 . 8: -0.595 .0 ..
Plou.l 0.222 :8 :8t-:9 :8 .0 .
Pfon2 -0.098 .0 .0 0
P.o,3 .0 .0 :.0:,8,, :0 :0 :8 8:plon( .0.0 : .0P.,o5 .0o.1.P lon6 .0 .0 .0 00

P.06.0 . .0 .0 :817
AMW.0

A.q .0 03,,93 0:0130 00 :8 :8a9w2 .0 .0 .0 .0 .0 .0 .0Amv3 .0 .0 .0 .0 .0 .0 .0
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TABLE B - 2

Regression coefficients for the seven zonal
eguations using 700mb EOF's. A value of .0 indicatespredictor was not selected in the stepwise
selection procedure.

FORECAST VALID FOR BASE TI3E PLUS HOURS

12 24 36 48 60 72 84

Intercept 28.246 52.181 88.091 e3.395 206.607 333.156 382.634
Cofl 1.759 4.857 11.116 16,472 19.921 23 .70 24.606
Cof2 .0 2.463 4.558 7.466 12.681 A, .0
Cof3 -2618 -6010 -10.575 -10.074 -16.974 -13.865 -29.982

fof4 2.270 4.774 7.7 5.3
Co5 875 11.5 15:989 26:300  45:822 51:812
Cof6 -2.451 .0 -8.754 10 .0 -214.452 -28.619
Cof7 .0 .0 .0 .0 .0 .0 .0
Cofs -3.301 -5.380 -10.965 .0 -21.056 -31.349 -50.614
Cof9 -3.268 .0 .0 .0 .0
Coflo .0 .0 .0
Plat• .0 .0 .0 -0 797 -1.000 .0 .0
Plat2 .0 .0 .0 .0 -0.787 .0
Plat3 .0 .0 -0.159 .0 . .0 .0
Pjat4 .0 -1.390

:0at .08 :8 :8 :8 :8 .0
Plat6 -0.124 -0.261 .0 0 .0 .0
Plonl -0.578 -1.486 -1 d53 -2. 164 -2.325 -2.308 -2.051Plon• -0083 .o Av .o 0. .0
Plon 0.0 .0 .0 .0 .0 .0
Plon4 .0 .0 .0 .0.0 .0 .0
Pion5 .0 .0 .0 :8 .0 .0 .0
Plon6 .0 .0 .0 .0 .0 .0 .0
AawO .0 .0 .0 .0 .0 .0 .0
&awl .0 .0 .0 .0 .0 .0 .0

awv2 .0 .0 .0 .0 .0 -2.259 -2.206
Amy3 -0.190 -0.400 -0.611 .0 -1.550 .0 .0
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TABLE B - 3

Regression coefficients for the seven aeridional
equations using 850mb 3OF's. A value of .0 indicates
t . e predictor was not selected in the stepwise
selec-,ion procedure.

FORECAST VALID FOR BASE TIRE PLUS HOURS

12 24 36 '48 60 72 84

Intercept 26.555 55.682 77.256 121.2-33 211.106 324.600 207.533
Cofl .0 .0 .0 .0 .0 .0 .0
Cof2 1.154 3.641 7.988 11.981 16.514 11.960
Cof3 3.865 9.081 17:34, 19.859 31.471 13.913 38:.64
Cof4 .0 .0 .0 .0 .0 33.760 .0
Cof5 .0 .0 .0 .0 .0 .0 .0
Cof6 -3.117 .0 .0 .0 -24.926 22.221 .0Cof8 :1 *8 :8 :8 :8 2 2 10
Cof9 3.894 9.170 0 .0 .0 .0
Coflo .0 .0 .0 .0 .0 .0
Plonl .0 .0 -0.404 -0.723 .0 .0 .0
Plon2 .0 .0 .0 .0 .0 .0 .0
Plon3 .0 .0 .0 .0 -0.358 -0.764 .0
Plon4 .0 .0 .0 .0 .0 .0 -1.470
Plons .0 .0 .0 .0 .0 .0 .0
Plon6 -0.114 -0.331 .0 .0 0 a .0
Platl -0.593 -1.542 -2.147 -2.477 -2.457 .0 -2.992
Plat2 -0.089 .0
"Plat3 .0 .0 .0 : .409 .0
Plat(& .0 .0 .0 .0 .0:88
Plat5 .0 .0
Plat6 .0 .0 .0 .0 .0 .0 .0
-wvo .0 .0 .0 .0 .0 .0 .0

&awl .0 .0 .0 .0 .0 .0 .0
Amy .0 .0 0 .0 .0 .0 .0
&uv3 -0.208 -0.481 -0.794 -0.856 -1.697 -2.407 .0
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TABLE B - 4

Eeqression coefficients for the seven zonaleguati:o3$usinq 850ab EOQs. A value of .0 indicatesne pre 1ctor Was not se ected in the stepvi seselection procedure.

ORECAST VALID FOR BASE TIAE PLUS HOURS

12 24 36 48 60 72 84

Intercept 29.935 72.723 92.290 158.753 210.892 190.344 309.226Cot 1 .0 .0 .0 .0 .0 .0 .0Cof2 -2.286 -5.569 -9.653 -*.213 -9.184 -15.096 .0Cof3 2:383 4.675 :0 11.,92 -5.976 14.822 13.543Cof4 .0 .0 .. 0 .0Cof5 1.886 4.859 .0 0 .0Cof6 4.692 11.561 18.413 17.100 23.592 31:160 24 811Cof7 .0 5.729 9.021 9.773 A0 .0 .0Cof8 .0 .0 .0 0 .0 .0 .0Cof9 4.569 7.327 9.740 .0 .0 .0 .0Plonl 0.807 1.011 1:"74 1 .s 1 80 1:826
P o.2 0.393 .0 .0 .0 .0fo , .o0:.
2lon6 -0.272 :. :8 :8 .:8 0PlonS .0 .0 .0 .0 .0Plon6 .0 .0 :8 08 .0.lat0 .0 .0 .0 .0 .0Plat2 .0 0.192 .0 .0 .0 .0 .0Plat3 .0 .0 .0 .0 .0 .0 .0Plat4 .0 -0.415 .0 .0 .0 .0 .0Plats .0 .0 .0 .0 .0 .0 .0Plat6 .0 .0 .0 .0 .0 .0 .0AmwO .0 .0 .0 .0 .0 .0 0kAvl .0 .0 0.486 .0 A 1:134 .0.0 .0 .0 00.0 .0 .0 :8 .0
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APPENDIX C
ODIFTED REGRESSION EQUATION UZSULTS

The enclosed table giv-s the R2 statistic, and the sample size
for each atmospheric level, for the modified regression equations.
These equations were derived using onll 13 potential predictors,
*he 10 coetfiecients, Platl, Plonl an' aml. The values may be
6cos•D.d with Table 5-3 us::g the entire set of 26 predictors.
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TABLE C - 1

Sam;le size and R2 stat.1stic for each zonal and seridional
modified .agressicn equation by forecast time and atmospheric
level.

FORECAST INTERVAL (HR)

12 24 36 48 60 72 84

NUMBER OF
DEPENCENT 409 '409 387 307 281 203 184
DATA CASES

ZONAL EQUATiO1S

500mb .777 .714 .672 .594 .549 .519 .457

700mb .758 .695 .649 .574 .544 .541 .470

850mb .738 .676 .614 .536 .497 .503 .456

MERIDIONAL EQUATIONS

500mb .483 .441 .395 .325 .229 .252 .169

700mb .465 .435 .378 .315 .228 .202 .145

850mb .431 .396 .337 .285 .225 .219 .111

145



LIST OF REFERENCES

Anderson, T. W., 1958: Introduction to Multivariate
Statistical Analysis. John Wiley and Sons, Inc., New
York, New York.

Anderson, T. W., 1963: The use of factor analysis in the
statistical analysis of multiple time series. Psycho-
metrika, 28, 1-25.

Barry, R. G., and A. H. Perry, 1973: Synoptic Climatology.
Methuen and Co. LTD., 555 pp.

Brown, D. W., 1981: Tropical Storm Movement Forecasting
Based on Synoptic Map Typing Using Empirical Orthogonal
Functions. M. S. Thesis, Naval Postgraduate School,
Monterey, California, 80 pp.

Cattell, R. B., 1958: Extracting the correct number of
factors in factor analysis. Educational and Psycho-
logical Measurement, 18, 791-837.

Chatfield, C., 1980: The Analysis of Time Series: An
Introduction, 2nd ed. Chapman and Hall, London and
New York.

Craddock, J. M., and C. R. Flood, 1969: Eigenvectors for
representing the 500mb geopotential surface over the
Northern Hemisphere. Quarterly Journal of the Royal
Meteorological Society', 95, 576-793.

Davis, R. E., 1976: Predictability of sea surface tempera-
ture and sea level pressure anomolies over the North
Pacific Ocean. Journal of Physical Oceanography, 6,
249-266.

Dixon, W. J. and M. B. Brown, 1979: BKDP Biomedical
Computer Programs P-Series, Univesrity of California
Press, Berkeley, California, pp. 367-460.

Gerald, Curtis E., 1978: Applied Numerical Analysis,
2nd ed., Pddison-Wesley Publishing Co., pp. 304-328
(Chapter 6).

Guttman, L., 1954: Some necessary conditions for common
factor analysis. Psychometrika, 19, 149-161.

146



71

Iv

Haltiner, G. J. and R. T. Williams, 1980: Numerical
Weather Prediction and Dynamic Meteorology. 2nd ed.,
John Wileyand Sons, Inc., New York, New York, 476 pp.

Harrison, E. J. Jr., 1973: Three-dimensional numerical
simulation of tropical systems utilizing nested finite
grids. Journal of Atmospheric Sciences, 30, 1528-1543.

--------- 1981: Initial results from the Navy two-way
interactive nested tropical cyclone model. Monthly
Weather Review, 109, 173-177.

Holton, J. D., 1972: An Introduction to Dynamic Meteorology.
Academic Press, New York, 319 pp.

Horel, J. D., 1981: A rotated principal component analysis
of the interannual variability of the Northern
Hemisphere 500mb height field. Monthly Weather Review,
103, 2080-2092.

Hotelling, H., 1933: Analysis of a complex of statistical
variables into principal components. o
Educational Psychology, 24, 417-441.

Huschke, R. E., 1959: Glossary of Meteorology. American
Meteorological Society., Boston, Massachusetts.

Jarrell, J. D., and W. L. Sommervell Jr., 1970: A computer
technique for using typhoon analogues as a forecast
aid. NAVWEARSCHFAC Technical Paper Number 6-70, 47 pp.

Kidson, J. W., 1975: Eigenvector analysis of the monthly
mean surface data. Monthly Weather Review, 103, 177-186.

Kutzbach, J. E., 1967: Empirical eigenvectors of sea-level
pressure, surface temperature and precipitation
complexes over North America. Journal of Applied
Meteorology, 6, 791-802.

Leftwich, R. W. and C. J. Neumann, 1977: Statistical
guidance for the prediction of eastern North Pacific
tropical cyclone motion. Part 2. NOAA Technical Memo,
WR-125, National Weather Service Western Region, Salt
Lake City, Utah, 32 pp. (NTISPB-272 661/OGI).

Lorenz, E. N., 1956: Empircal Orthogonal Function and
Statistical Weather Prediction. Massachusetts Institute
of Technology Department of Meteorology, Cambridge,
Massachusetts. Scientific Report 1, Statistical
Forecasting Project, 48 pp.

147

-- (V" y . I



, 1977: An experiment in non-linear statistical
weather forecasting. Monthly Weather Review, 105,
590-602.

Morrison, D. F., 1967: Multivariate Statistical Methods.
McGraw-Hill, New York, 338 pp. (ed. 2, 1976).

Neter, J., and W. Wasserman, 1974: Applied Linear
Statistical Models. Richard D. Irwin, Inc., Homewood,
Illinois, 842 pp.

Pearson, K., 1901: On lines and planes of closest fit to
systems of points in space. Philosophical Magazine,
2, 559-572.

Peterson, K. A., 1980: Improvement in Tropical Cyclone
Forecasts by Multiple Linear Regression Equation
Adjustment of Analog Tracks. M. S. Thesis, Naval
Postgraduate School. Monterey, California, 47 pp.

Preisendorfer, R. W., and T. P. Barnett, 1977: Significance
tests for empirical orthogonal functions. Proceedings
from the 5th conference on Probability and Statistics
in Meteorology In Atmospheric Science, Nov. 15-18, 1977,
American Meteorological Society, Boston, MA, 169-172.

Richman, M. B., 1980: Map Typing Patterns Associated with
Urban Enhanced Precipitation. M. S. Thesis, University
of Illinois, Urbana, 123 pp. (available from Illinois
Department of Water Management, Champaign, Illinois).

-, 1981: Obliquely rotated principal components:
an improved map typing technique? Journal of Applied
Meteorology, 20, 1145-1159.

RinlLe, J., and V. Karhila, 1979: Empirical Orthogonal
Functions of the 500mb height in the Northern Hemisphere
determined from a large data sample. Quarterly Journal
of the Royal Meteorological Society, 105, 873-884.

Stidd, C. K., 1967: The use of eigenvectors for climatic
estimates. Journal of Applied Meteorology, 6, 255-264.

Walsh, J. E., and A. Mostek, 1980: A quantitative analysis
of meteorological anomaly patterns over the United
States, 1900-1977. Monthly Weather Review, 108, 615-630.

Walsh, J. E., and M. B. Richman, 1981: Seasonality in the
association between surface temperature over the United
States and the North Pacific Ocean. Monthly Weather
Review, 109, 767-783.

148

//i " .. • ,

, / •

/i



INITIAL DISTRIBUTION LIST

No. Copies

1. Professor Russell L. Elsberry, Code 63Es 5
Department of Meteorology
Naval Postgraduate School
Monterey, California 93940

2. Capt. Alan R. Shaffer, USAF 5
Department of Meteorology, Code 63
Naval Postgraduate School
Monterey, California 93940

3. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

4. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

5. Air Weather Service 2
Technical Library
Scott Air Force Base, Illinois 62225

6. Dr. Robert J. Renard, Code 63Rd 1
Chairman, Department of Meteorology
Naval Postgraduate School
Monterey, California 93940

7. Captain Brian Van Orman 1
Program Manager, AFIT/CIRF
Air Force Institute of Technology
Wright-Patterson Air Force Base, Ohio 45433

8. Commanding Officer 1
Fleet Numerical Oceanography Center
Monterey, California 93940

9. Commanding Officer 1
Naval Environmental Prediction Research Facility
Monterey, California 93940

10. Commander
Air Weather Service
Scott Air Force Base,
St. Louis, Missouri 62225

149



.1. Systems and Applied Sciences Corporation
570 Casanova Avenue
Monterey, California 93940

12. Lt. Scott Sandgathe, Code 63Ss
Department of Meteorology
Naval Postgraduate School
Monterey, California 93940

13. Lt. Dennis G. Larscn
Geophysics Officer
USS Pelieu, LHA5
Long Beach, California 90801

14. Lt. Barry Donovan, USN
Oceanographic Centre
STAFF CINCEASTLANT
APO, New York 09241

150


